CPX road surface noise monitoring in Germany and Switzerland

Thomas Beckenbauer
Müller-BBM, Munich, Germany
Agenda

- a short history
- road surface monitoring in Switzerland
- road surface monitoring in Germany
- minimization of uncertainties
Short history

- Germany
 - experimental device
 - no serious intents

- The Netherlands
 - lucky division of budgets: the ministry for transport has to pay for the road pavements, the ministry for environment has to pay for noise protection. Everyone shouts: „Save my budget!“
 - the Netherlands were the political driver for ISO standard 11819-2

- Austria
 - approval tool for cement concrete road surfaces (RVS 11.06.64)
Current situation

- Germany
 - road building that is oriented towards road building regulations without acoustic requirements
 - preventive noise protection strategy
 - no legal duties for road administrations to monitor the acoustic state of their road networks
 - therefore, no reason for road administrations to conduct CPX measurements within their road networks
 - however, in recent years, regional and local road administrations initiated CPX data collection projects to
 - find out which types of road surfaces perform better than others in terms of tyre/road noise
 - assess actions taken to improve the structural quality of road pavements
Current situation

- Germany

 terms and definitions

 tyre/road noise reference values, passenger cars

<table>
<thead>
<tr>
<th></th>
<th>50 km/h</th>
<th>80 km/h</th>
<th>120 km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPB, dB(A)</td>
<td>72.7</td>
<td>78.8</td>
<td>85.2</td>
</tr>
<tr>
<td>CPX, dB(A)</td>
<td>-</td>
<td>101.0</td>
<td>-</td>
</tr>
</tbody>
</table>

tyre/road noise level correction is determined 3 years after construction (new considerations: 6 years)

no acoustic life-span considerations
Current situation

- Germany

 facts and figures

 - 83 Mio. people
 - 357,000 km²
 - 830,000 road km
 - Autobahnen 13,000 km no speed limit
 - federal roads 38,000 km speed limit 100/120 km/h
 - state roads 87,000 km speed limit 100 km/h
 - district roads 92,000 km speed limit 100 km/h
 - rest (estim.) 230,000 km speed limit 50/80/100 km/h
Current situation

- Switzerland
 - road building that is oriented towards roads building regulations without acoustic requirements
 - both preventive noise protection and periodic revision of noise protection measures is obligatory
 - therefore, there is a legal duty to monitor the quality of the road network in terms of tyre/road noise
 - ⬇ measurement schedule

![Measurement Schedule Diagram]

- new pavement construction

![Time Scale Diagram]

- year 0 0.5 1 2 3 4 5 10
Current situation

- Switzerland
 terms and definitions
 - tyre/road noise reference values, passenger cars

<table>
<thead>
<tr>
<th></th>
<th>50 km/h</th>
<th>80 km/h</th>
<th>120 km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPB, dB(A)</td>
<td>70.5</td>
<td>77.6</td>
<td>83.7</td>
</tr>
<tr>
<td>CPX, dB(A)</td>
<td>90.1</td>
<td>97.1</td>
<td>-</td>
</tr>
</tbody>
</table>

- low noise road surface

\[0 \text{ dB(A)} \quad -1 \text{ dB(A)} \quad -3 \text{ dB(A)} \geq | -3 \text{ dB(A)} | \]

\[0 \quad \text{acoustic life-span} \quad \geq 15 \text{ age, years} \]
Current situation

- Switzerland

 facts and figures

- 8.5 Mio. people
- 41,000 km²
- 72,000 road km
 - motorways 1,500 km speed limit 120 km/h
 - federal roads 400 km speed limit 80 km/h
 - state roads 17,800 km speed limit 80 km/h
 - rest (estim.) 52,300 km speed limit 50/80 km/h
Switzerland – large scale road network monitoring in 2009

- measurement method of choice: CPX
- all motorways
- all traffic lanes on each motorway
- tyre P1 on the right, tyre H1 on the left
- one reference speed 80 km/h
- 6,400 measurement kilometers
- measurements took 3 months
Switzerland – large scale road network monitoring

CPX_p, @80 km/h
Switzerland – large scale road network monitoring

$\Delta CPX_p \approx 12 \text{ dB} !$
regarding the entire network

hotspots
Switzerland – low noise road surfaces, best practice

- Two tables: pavements with 4 to 6 mm max. grain size
 pavements with 8 to 11 m max. grain size

<table>
<thead>
<tr>
<th>surface type</th>
<th>contact person</th>
<th>date of constr.</th>
<th>year 0</th>
<th>year 1</th>
<th>year 2</th>
<th>year 3</th>
<th>year 4</th>
<th>year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavements with 4 to 6 mm max. grain size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavements with 8 to 11 m max. grain size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measurement 1 year after construction:

- Noise level reduction:
 - Meas. light heavy mix
 - Method veh. veh. with 8% heavy

| CPX | -8.8 | -6.7 | -7.5 |
Germany – learning from the roads

- transition from regulation based to performance based road construction contracts
- acoustic performance
 - magnitude of the tyre/road noise level
 - homogeneity of the tyre/road noise along the road
 - durability of the noise level reduction
- tyre/road noise monitoring
 - big data collection
 - easy determination of performance parameters
 - assuming that road administration is willing to test materials, machinery, production technology within the boundaries of the building regulations
Germany – learning from the roads

- a good practice example: a road administration’s playground
Germany – road surface monitoring

CPX, dB(A) vs. position, m
Germany – road surface monitoring

- an example

thin layer asphalt 0/5 (low noise asphalt)
11 road sections
48 km
2,400 CPX segments at 20m each
age 0.5 ... 8 years after construction
construction between 2005 and 2010
CPX_P, 80km/h
Germany – road surface monitoring

0.5 years cumulative frequency %

Reference value

Acoustic performance

- Magnitude: -6.4 dB
- Homogeneity: 2.3 dB
- Durability: ?

Performance parameter

- 'Homogeneity' (overall = inter and intra road)
- @Building process reliability

- 'Magnitude' @initial noise level reduction

- 'Magnitude' @initial noise level reduction

Performance parameter

- 94.6 dB(A)
Germany – road surface monitoring
thin layer low noise asphalt 0/5

<table>
<thead>
<tr>
<th>Frequency %</th>
<th>Cumulative Frequency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 years</td>
<td>-6.4 dB</td>
</tr>
<tr>
<td>4 years</td>
<td>-3.4 dB</td>
</tr>
<tr>
<td>8 years</td>
<td>-2.2 dB</td>
</tr>
</tbody>
</table>

acoustic performance

- magnitude: -6.4 dB
- homogeneity: 2.3 dB
- durability: 0.75 dB/year, 0.53 dB/year
Germany – road surface monitoring

exposed aggregate cement concrete 0/8

acoustic performance

magnitude

homogeneity

durability

0.80_{4\text{year}} / 0.68_{8\text{year}} dB/year

-4.4 dB

2.0 dB

-1.2 dB

+1.0 dB
Germany – road surface monitoring
Germany – road surface monitoring

- tyre P1
- tyre H1
- 80 km/h

thin layer 0/5

- 0 dB
- 5,000 m

- +1 dB
- 5,000 m

- +2 dB
- 5,000 m

porous asphalt 0/8

- 0 dB
- 7,000 m

- +1 dB
- 7,000 m

- +2 dB
- 7,000 m

- +4 dB
- 7,000 m
Making the CPX method applicable
Minimization of uncertainties – DE’s and CH’s approach

- **Choice of the test vehicle**
 - self powered standard vehicle
 - self powered special purpose vehicle
 - open trailer
 - trailer with auxiliary wheels
 - uniwheel trailer
 - closed trailer with towing van
Minimization of uncertainties

- Choice of the test vehicle in Germany and Switzerland
 - prevention of interfering noise
 - avoidance of interfering sound sources
 - unbiased tyre/road noise
 - well defined sound field
 - closed version
 - no auxiliary wheels
 - two wheels rolling in the wheel tracks
 - absorbing hatches
Minimization of uncertainties

- towing vehicle

80 km/h
13 dB
\(\sim v^6 \)
50 km/h

without towing vehicle

with towing vehicle

\(v_{\text{wind}} \)

normal measurement

semi dense asphalt 0/8

\(v_{\text{wind/drive}} = 80 \text{ km/h} \)
Minimization of uncertainties

- defined positioning of the microphones
 - use of a setting gauge
Minimization of uncertainties

- Tyre management
 - check tread profile depth
 - check hardness

- store suitably

![Graphs showing the relationship between age and hardness for Tyres P1 and H1](image)

- Tyre P1:
 - Equation: \(y = 1.47x + 60.36 \)
 - \(R^2 = 0.94 \)

- Tyre H1:
 - Equation: \(y = 1.95x + 58.12 \)
 - \(R^2 = 0.64 \)
Minimization of uncertainties

- temperature measurement
 continuous and well shielded measurement of ...
 ... air temperature
 ... road surface temperature
Minimization of uncertainties

- temperature measurement

 air temperature measurement under the lee of the towing vehicle

 road surface temperature measurement facilitating the identification of surface transitions
Minimization of uncertainties

- dry road surface condition

waiting period after precipitation events (Central Europe)

<table>
<thead>
<tr>
<th>type of road surface</th>
<th>average air temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5°C</td>
</tr>
<tr>
<td>porous asphalt</td>
<td>72 h</td>
</tr>
<tr>
<td>double-layer porous asphalt</td>
<td>72 h</td>
</tr>
<tr>
<td>semi porous asphalt</td>
<td>48 h</td>
</tr>
<tr>
<td>impervious pavement</td>
<td>24 h</td>
</tr>
</tbody>
</table>
Thank you very much for listening!

www.MuellerBBM.de
Thomas.Beckenbauer@mbbm.com