NCTIR
RECONNECTING COMMUNITIES

RAMM PIT
RAMM Pickup Integration Tool

Hamish Kingsbury
• Introduction
• The Problem
• The Solution
• Future
Introduction
(Field) Collection

Administration
- H&S & HR
- Site visit Reports
- Auditing

Spatial Data Capture
- Geotech mapping
- Archaeological mapping
- Asset assessment

Event Logging
- Slope movement
- Rain gauge
- Extensometer
Choosing the right tool for the right job
Integration – 12d Design

Visualizing design in GIS
Providing daily updates of design
Integration – RAMM

Damages Database Download
Latest spreadsheet of identified damages database, note download date on file name. Refer direct to RAMM for photos/inspection notes (progress notes)
The Problem
Guard Rail attributes from RAMM

1. Rail Type

<table>
<thead>
<tr>
<th>Rail Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKL</td>
<td>Steeler Bar Rail</td>
</tr>
<tr>
<td>R1</td>
<td>Rivet Rail</td>
</tr>
<tr>
<td>CABLE</td>
<td>Cable Barrier</td>
</tr>
<tr>
<td>GREAT</td>
<td>Great Crash Rail</td>
</tr>
<tr>
<td>SPC</td>
<td>Steel Post and Plate Rail</td>
</tr>
<tr>
<td>SWRA</td>
<td>Steel Wire Rope and Anchor Rail</td>
</tr>
<tr>
<td>TFRC</td>
<td>Traffic Rail (Steel) Guard Rail</td>
</tr>
<tr>
<td>TWR</td>
<td>Traffic Rail (Wood) Guard Rail</td>
</tr>
<tr>
<td>MD</td>
<td>Metal Design Guard Rail</td>
</tr>
</tbody>
</table>

2. Terminal End

<table>
<thead>
<tr>
<th>Rail Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREAT</td>
<td>Great Crash Rail Ends</td>
</tr>
<tr>
<td>CABLE</td>
<td>Cable Safety System - CRP</td>
</tr>
<tr>
<td>SPC</td>
<td>Steel Post and Plate Terminal</td>
</tr>
<tr>
<td>MD</td>
<td>Metal Design Terminal</td>
</tr>
</tbody>
</table>

3. Shape

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Straight</td>
</tr>
<tr>
<td>C</td>
<td>Curved</td>
</tr>
</tbody>
</table>

4. Ground Fix

<table>
<thead>
<tr>
<th>Rail Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREAT</td>
<td>Great Crash Rail Ends</td>
</tr>
<tr>
<td>SPC</td>
<td>Steel Post and Plate Fix</td>
</tr>
<tr>
<td>SWRA</td>
<td>Steel Wire Rope and Anchor Fix</td>
</tr>
<tr>
<td>TFRC</td>
<td>Traffic Rail (Steel) Guard Rail Fix</td>
</tr>
<tr>
<td>TWR</td>
<td>Traffic Rail (Wood) Guard Rail Fix</td>
</tr>
</tbody>
</table>

5. Notes

- **Contract Name**
- **Contract Number**
- **Organization (Contractor)**
- **Road ID**
- **Road Name**
- **Date**
- **Start RP (m)**
- **Start Name**
- **End RP (m)**
- **End Name**
- **Length (m)**
- **Rail Height (mm)**
- **Offset Kerb - Start**
- **Offset Kerb - End**
- **Railing Type**
- **Railing Material**
- **Railing Height**
- **Start Terminal End**
- **End Terminal End**
- **Start north facing**
- **Start south facing**
- **Install date**
- **Original Cost $**
- **Ground Fix**
- **Post Count**
- **Post Material**
- **Length Adjust**
- **Reason**

6. Attachments

- **Rail Type**
- **Description**
- **Post Count**
- **Post Material**
- **Length Adjust Reason**

7. Condition

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Excellent</td>
</tr>
<tr>
<td>2</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Average</td>
</tr>
<tr>
<td>4</td>
<td>Poor</td>
</tr>
<tr>
<td>5</td>
<td>Bad</td>
</tr>
<tr>
<td>6</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Programme funded by New Zealand Government
The Solution
Design
RAMM Fields
- Domains
- Formatting
- Field types

Suppliers
- Material types

Design Info
- Geometries
- Chainage
- Attribution (limited)

```xml
<data_3d>  
<point>382289.49287639 700585.85663886 7.32546173</point>  
<point>382289.545187 700584.85900799 7.34139376</point>  
<point>382289.5974976 700583.85937713 7.3584178</point>  
<point>382289.64900821 700582.86074627 7.37489583</point>  
<point>382289.70211881 700581.8621154 7.39137386</point>  
<point>382289.75442942 700580.86348454 7.40785189</point>  
<point>382289.80674002 700579.86485368 7.42432992</point>  
<point>382289.85905063 700578.86622282 7.44080795</point>  
<point>382289.91136123 700577.86759195 7.45728598</point>  
<point>382289.96367183 700576.86896109 7.47376401</point>  
<point>382290.01598244 700575.87033023 7.49024205</point>  
<point>382290.06829304 700574.87169936 7.50672008</point>  
<point>382290.12060365 700573.87306685 7.52319811</point>  
<point>382290.17291425 700572.87443764 7.53967614</point>  
<point>382290.22522486 700571.87580677 7.55615417</point>  
<point>382290.27753546 700570.87717581 7.5726322</point>  
<point>382290.32984607 700569.87854505 7.58911023</point>  
<point>382290.38125667 700568.87991419 7.60558826</point>  
<point>382290.43346725 700567.88123332 7.6220663</point>  
<point>382290.48577788 700566.88265246 7.63854433</point>  
<point>382290.53908848 700565.8840216 7.65502236</point>  
</data_3d>

Future
AS BUILT SURVEYING
Summary

• Old ‘paper’ based procedure
• Health and Safety improvements
• Spatial based process
• Improved efficiency, collection → validation
Questions?

Hamish Kingsbury

Hamish.Kingsbury@nctir.com
Hamish.Kingsbury@abley.com