

Domestic Transport Costs and Charges Study

Main report

Prepared by Ian Wallis Associates Ltd Not Government policy June 2023

Contents

Abstractix						
Executive Summary 1						
Chapter 1Introduction to the DTCC Study – Setting the Scene131.1This report131.2Overview of Study scope131.3DTCC outputs and potential applications141.4Study documentation and reporting151.5Study participants171.6Confidentiality considerations17						
Chapter 2 Overview of NZ Domestic Transport Sector						
Chapter 3 Economic Principles and Methodology – Transport Services and Infrastructure						
3.1Overview						
Chapter 4 Road System Appraisal						
4.1Introduction284.2Key road network and road usage statistics284.3Road users - direct costs304.4Road vehicle ownership and use charges324.5Other road user costs354.6Valuation of the road network364.7Public expenditure on the road system374.8Alternative approaches to the assessment of the costs of the road system414.9Balancing user contributions with the costs of the road network424.10Overview of road network performance and costing issues434.11Allocation of road infrastructure economic costs45						
 4.12 Car parking						

4.14	Road infrastructure – marginal costs of road wear	55
4.15	Road infrastructure-marginal costs of traffic volume (congestion)	
Chap	ter 5 Rail System Appraisal	62
5.1	Coverage of chapter	
5.2	Overview of rail system ownership, structure, management and funding	
	arrangements	62
5.3	NZ rail network, services and usage overview	
5.4	Valuation of the rail system assets	
5.5	Rail safety	
5.6	Long run variable costs	
5.7	Financial and economic performance summary	74
Chap	ter 6 Urban Public Transport	
6.1	Overview	75
6.2	National picture	
6.3	Urban rail services—Wellington case study	80
6.4	Urban bus services—Wellington case study	83
Chap	ter 7 Long-distance Coaches	87
7.1	Overview	
7.2	Operational and financial estimates	
7.3	Overhead costs	
7.4	Marginal operator costs	
Chap	ter 8 Personal (for hire) Transport	89
8.1	Scope of chapter	
8.2	Taxi and ride-hail services	
8.3	Micro-mobility	91
Chap	ter 9 Active Transport	94
9.1	Scope of chapter	
9.2	Walking and cycling	
9.3	Health impacts of active transport	
Chap	ter 10 Coastal Shipping	
10.1	Scope of chapter	
10.2	Domestic sea freight	
10.3	Cook strait ferry services	
10.4	Maritime accident and environmental aspects	
Chap	ter 11 Environmental Impacts	106

11.1	Scope of chapter	106
11.2	Local and global emissions	106
11.3	Noise	116
11.4	Biodiversity and biosecurity	118

Appendices

Appen	ndix 1 Glossary of Terms and Abbreviations	121
Appen	ndix 2 Listing of DTCC Working Papers	
Appen	ndix 3 Summary of Economic and Financial Performance (201	.8/19).126
Appen	ndix 4 STCC and DTCC Comparisons – Road	127
A4.1	Context and overview	
A4.2	Assessment approach	
A4.3	Results and commentary	128
Appen	ndix 5 STCC and DTCC Comparisons – Rail	131
A5.1	Context and overview	131
A5.2	Rail summary	131
A5.3	Rail freight business	132
A5.4	Long-distance passenger business	
A5.5	Safety	136
A5.6	Environmental costs	136
A5.7	Summary of Results	137

Tables

Table 1.1: Organising framework for DTCC topics 16
Table 2.1: Overview of NZ domestic transport sector
Table 4.1: Vehicle numbers and distance travelled by vehicle type 2018/19
Table 4.2: Estimated breakdown of the total road freight task by goods vehicle type 2018/19 29
Table 4.3: Estimated breakdown of traffic by road and vehicle type 2018/19 (billion vehiclekm)
Table 4.4: Values of time for person travel 2018/19 (\$/hr)
Table 4.5: Estimated aggregate total annual costs by vehicle type (incl. time costs), 2018/19(\$bn)
Table 4.6: Average fuel duties and levies 2018/19 (c/litre)
Table 4.7: Average RUC rates by vehicle class (\$/km)
Table 4.8: Total payments from users allocated by vehicle type and road type $2018/19$ (m) ⁽¹⁾ 34

Table 4.9: Direct economic and social costs incurred or generated by road users excludingnetwork provision 2018/19 (\$bn)35
Table 4.10: Summary valuation estimates for the New Zealand road network 2018/1937
Table 4.11: Sources of expenditure on the roads sector 2018/19 (\$m)
Table 4.12: Estimated breakdown of roading expenditure by road type 2018/19, PAYGOapproach
Table 4.13: Estimated breakdown of roading costs by road type 2018/19, Capital returnapproach
Table 4.14: Costs and revenues associated with the national road network 2018/19 by broad user type (\$m) – PAYGO and economic return on capital approaches
Table 4.15: Road person and freight transport economic and financial analysis summary2018/19
Table 4.16: Comparison between CAM rates and average economic cost rates, 2018/19 46
Table 4.17: Definitions of vehicle types for modified CAM analysis47
Table 4.18 Estimated RUC and average economic cost (km in billion)
Table 4.19 Unit Annual Costs per NZ Parking Space (\$pa/space)49
Table 4.20 Total annual costs and average cost rates for road accidents by user type (2018/19) 52
Table 4.21 Calculated marginal accident cost rates (2018/19)54
Table 4.22 Average delays and costs (regional transport model results)60
Table 5.1: Key rail freight statistics (2018/19) 67
Table 5.2 : KiwiRail "Great Journeys" passenger train statistics (2018/19)68
Table 5.3: Summary of asset values and return for rail freight and long-distance passenger
Table 5.4:Ten calendar year average casualty data (2010-2019 inclusive)
Table 5.5:Summary of rail safety costs (\$M)72
Table 5.6:Total fixed and variable costs of the rail transport74
Table 6.1: Summary of urban transport statistics by mode (2018/19)78
Table 6.2: Summary of Wellington Rail Operating Costs and Capital Charges 2018/1981
Table 6.3: Summary of Wellington Rail Performance Statistics - Peak vs Off-peak
Table 6.4: Allocated Costs and Charges Summary (2018/19), Wellington bus
Table 8.1: Costs per in-service vehicle-kilometre – Taxi and Ride-hailing services vis-à-vis Private Cars
Table 8.2: Shared mobility main results – cost components per kilometre to generate consumer charge 92
Table 9.1: Average direct economic costs per person kilometre travelled 96
Table 10.1: Cook Strait Ferries Operations and Financial Summary (2018/19)104
Table 11.1: Summary of local air quality pollutants and climate pollutants (greenhouse gases)107
Table 11.2: Adjusted damage costs used in the DTCC emissions assessment (June 2019 prices)109

111
. 112
. 117
. 119

Figures

Figure 4-1: Road system economic cost proportions by type	5
Figure 4-2 Outline structure of roading and public transport revenue and expenditure flows 38	3
Figure 4-3: Breakdown of operating and capital expenditure by road type 2018/19 (\$m) – elements included in CAM analysis only (PAYGO approach))
Figure 4-4: Breakdown of cost components for motor vehicle accidents (2018/19) (by percentage)	3
Figure 4-5: Breakdown of cost components for non-motor vehicle accidents (2018/19) (by percentage)	3
Figure 6-1 Total national UPT expenditure and cost recovery, 2018-24 (\$18/19)80)

Disclaimer

This is the Main Report of the New Zealand Domestic Transport Costs and Charges (DTCC) Study (this Study). A consultant team led by Ian Wallis Associates Ltd was contracted by Te Manatū Waka Ministry of Transport to carry out this Study.

The views expressed in the Main Report and the accompanying Working Papers are the outcomes of the consultant's independent research and should not be regarded as being the opinion or responsibility of Te Manatū Waka. The material contained in the Main Report or the accompanying Working Papers should not be construed in any way as policy adopted by Te Manatū Waka or any other agency of the NZ Government. Findings from this Study may, however, be used by NZ Government agencies as a reference in the subsequent development of policy.

While the Main Report and the accompanying Working Papers are believed to be correct at the time of their preparation, Te Manatū Waka and agents involved in their preparation and publication do not accept any liability for use of the material contained in the Main Report and the accompanying Working Papers. People using such material, whether directly or indirectly, should apply and rely on their own skill and judgment. They should not rely on the contents of the Main Report and the accompanying Working Papers in isolation from other sources of advice and information. If necessary, they should seek appropriate legal or other expert advice.

Copyright

Under the terms of the New Zealand Creative Commons Attribution 4.0 [BY] licence, this document, and the information contained within it, can be copied, distributed, adapted and otherwise used provided that:

- the Ministry of Transport is attributed as the reference source
- the material is not misrepresented or distorted through selective use of the material
- images contained in the material are not copied.

The terms of the Ministry's Copyright and disclaimer apply, available at: www.transport.govt.nz.

Research, Economics and Evaluation

The Research, Economics and Evaluation team operates within the System Performance and Governance Group of Te Manatū Waka Ministry of Transport. The team supports the Ministry's policy teams by providing the evidence base at each stage of the policy development.

The team is responsible for:

- Providing sector direction on the establishment and use of the Transport Evidence Base (see below) – including the collection, use, and sharing of data, research and analytics across the transport sector, and fostering the development of sector research capabilities and ideas.
- Leading and undertaking economic analyses, appraisals and assessment including providing economic input on business cases and funding requests.
- Performing the evaluation function for Te Manatū Waka, including designing monitoring and evaluation frameworks and approaches, developing performance metrics and indicators, and designing, conducting and procuring evaluations.

The Transport Evidence Base

The Transport Evidence Base Strategy creates an environment to ensure data, information, research and evaluation play a key role in shaping the policy landscape. Good, evidence-based decisions also enhance the delivery of services provided by both the public and private sectors to support the delivery of transport outcomes and improve wellbeing and liveability in New Zealand.

The Domestic Transport Costs and Charges Study aims to fill some of the research gaps identified in the 2016 Transport Domain Plan (Recommendation R6.2), which forms part of the Transport Evidence Base.

Citation

Ministry of Transport (2023). Domestic Transport Costs and Charges (DTCC) Study – Main Report, Prepared by Ian Wallis Associates Ltd, Wellington: Te Manatū Waka Ministry of Transport, New Zealand.

Published in June 2023 by Te Manatū Waka Ministry of Transport, PO Box 3175, Wellington 6140, New Zealand.

For more information

For more information about this project and associated working paper(s), please contact: info@transport.govt.nz.

Abstract

This Domestic Transport Costs and Charges Study aims to improve our understanding of the costs of the provision and use of New Zealand's domestic transport system. It also looks at costs relative to the charges or burdens facing transport users to improve our understanding of the economic, environmental and social costs associated with different domestic transport modes and movement types.

This report provides a socio-economic and financial appraisal of the existing New Zealand domestic transport sector (as it was in 2018/19, prior to the Covid-19 pandemic). It covers urban/local and longer-distance travel, covering both person and freight movements, using the road system (private vehicles and public transport, walking and cycling, truck transport), the rail system (freight movements, urban and longer-distance passenger movements) and water-borne transport (urban ferry and inter-island ferry services).

The Study finds that the total annual economic costs involved in the NZ domestic transport sector are approximately NZ\$125 billion, which represents an annual average of about NZ\$25,000 per head of the NZ population, for 2018/19.

The DTCC Study does not aim to deliver any conclusions about how costs or charges can or should be changed in the future. Rather, the Study outputs contribute to the transport sector's understanding of how specific modes, and to the extent possible, specific sub-sets within modes (types of users, vehicle types, fuel types): (i) impose costs on New Zealand's economy, environment, and population; and (ii) to what extent those costs are 'met' by charges (if any) paid for transport system use.

The Study outputs will encourage policy decisions in the transport and related sectors based on sound evidence. When used with information on other benefits and costs of policy proposals, this information can help with policy problem definition, assessment of multi-modal policy and investment, greenhouse gas emissions interventions, social and environmental impacts, and transport funding and charging system. To support these applications, data and information on transport costs and charges should be updated every five to seven years.

Executive Summary

The DTCC Study

This is the Main Report of the New Zealand Domestic Transport Costs and Charges (DTCC) study, which has been undertaken for Te Manatū Waka Ministry of Transport by a consultant consortium led by Ian Wallis Associates Ltd. Peer review inputs have been provided by the Institute for Transport Studies at the University of Leeds (UK), supplemented by a local review team of staff from Te Manatū Waka, Waka Kotahi (the NZ Transport Agency, NZTA) and other government agencies.

The overall aim of the DTCC Study was to identify all the costs associated with the domestic transport system as they impact on the wider NZ economy, and the contributions to these costs by transport system users and other parties. Its outputs aim to improve understanding of the economic, environmental and social costs associated with different domestic transport modes, for person and freight movements, principally by road (including walking and cycling as well as motorised person and freight movements), rail (both person and freight movements) and urban public transport (by bus, train and ferry).

The Study was commissioned in early 2020. At that time, the last completed financial year for which data was available was 2018/19 (ending 30 June 2019), so this was chosen as the analysis year for use throughout the Study. In the event, this proved an appropriate choice, as the travel and transport data for years 2019/20 and 2020/21 were significantly affected by the Covid-19 pandemic. Unless otherwise noted, all data in this report relates to FY 2018/19, and all cost and price data is expressed in 2018/19 prices (excluding GST).

The consultant work has involved the preparation of 25 Working Papers¹, which have each been subject to peer review. This Main Report brings together and summarises the more detailed work from those papers, including those relating to road and rail transport. These include papers on urban public transport, walking and cycling, taxis and rideshare services, micro-mobility (e-scooters), the Cook Strait ferry services and coastal shipping services.

A major focus of the work has been to analyse these modes on a comparable basis, starting from financial and usage statistics, broadening out to encompass economic statistics (through applying costs of capital, values of time etc) and extending further to include socioeconomic valuations for greenhouse gas emissions, local air pollutants, noise, public health impacts and accident (crash) impacts.

Overview of NZ domestic transport task

Measures of NZ transport task

The Study developed a set of annual estimates of domestic transport movements in NZ (representative of the situation in 2018/19). This set of estimates covers both movements of people (person transport) and movements of goods (freight transport). While this set of estimates does not have 100% coverage (it was not intended to be a census), it does cover

¹ A detailed listing of Working Paper topics and their authors is given in Appendix 2. The Working Papers used information from a wide range of sources that were not always consistent. While every attempt has been made to resolve such differences, some minor discrepancies may still be present.

all types of domestic transport in a comprehensive manner, with the main exceptions being the exclusion of travel by domestic aviation² and 'off-road' travel.

Table S.1 provides a summary of the amount of travel undertaken in NZ annually, divided first between person transport and freight transport movements.

Mode	Category	Service/Vehicle type	Person	Person km		
			pkm-mill pa	% total	reference	
Road	Personal transport	Car/light vehicle	57,350	92.7%	WP C4	
		Motorcycle	400	0.6%	WP C4	
		Demand-response/Taxi	650	1.1%	WP C4	
		Micro-mobility	5	0.0%	WP C10	
		Walk	656	1.1%	Table S.3	
		Cycle	289	0.5%	Table S.3	
	Public/shared	Public bus	890	1.4%	Table S.3	
	transport	MoE school bus	380	0.6%	WP C12	
		Long-distance coach	371	0.6%	WP C6	
Rail	Public/shared	Urban rail passenger	607	1.0%	Table S.3	
	transport	Long-distance rail passenger	73	0.1%	Table S.3	
Sea	Public/shared	Urban ferry	91	0.1%	Table S.3	
	transport	Cook Strait ferry	108	0.2%	WP C15	
Total Pe	rson Transport		61,870	100.0%		
B: Freigh	t Transport					
Mode	ode Category Service/Vehicle type		Net tonn	Cross		
			ntk-mill pa	% total	reference	
Road	Freight transport	Road trucks	30,800	77.0%	Table S.3	
Rail	Freight transport	t Rail wagons 4,407		11.0%	Table S.3	
Sea	Freight transport	Coastal shipping	4,630	11.6%	WP C14	
		Cook Strait ferry	140	0.4%	WP C15	
Total Fre	eight Transport		39,977	100.0%		

Table S.1: NZ Domestic Transport Market Summary (2018/19)

Notes:

1 Domestic Aviation (person and freight transport) not included, as outside the scope of the DTCC Study.

2 For **person** transport movements, the measure used in Table S.1 is the total person-kilometres ('pkm') travelled, i.e. the sum of the distances travelled by all people in NZ (including international visitors) over the 12 month period.

3 For **freight** transport movements, the measure used is total net tonne kilometres ('ntk'), i.e. the sum-product of total freight tonnage carried times the distance transported. Note that this measure relates to the freight commodities only, excluding the weight of all vehicles, containers and other packaging.

The primary measure used for person transport is person kilometres (pkm), with the corresponding measure for freight transport being net tonne kilometres of freight moved (ntk): further details of these measures are given in the notes to Table S.1. These estimates of domestic transport movements (hereinafter referred as the transport task) are further categorised by 'mode', i.e. road, rail and sea-based transport.

² Domestic aviation was originally within the scope of DTCC. However, as a result of the Covid-19 pandemic, airline managers were not able to meet with the study team members and to provide the required information in a timely manner.

The person transport road mode is then further sub-divided between personal transport and public/shared transport services and associated vehicle types (as detailed in Table S.1) 'Personal transport' is generally by small, privately-owned vehicles, using the road network, while public/shared transport refers to larger vehicles, generally 'public transport', in most cases with seats available on payment of a fare. Freight transport is further categorised according to vehicle/vessel type.

Key features of the NZ transport task

The NZ **person transport task** is dominated by the **road-based movements.** For NZ person transport movements in 2018/19, road accounted for some 98.6% of total pkm, rail (urban and longer-distance) for 1.1% and passenger ferry/ship for the remaining 0.3%. Included in the roads total of 98.6%, cars/light vehicles account for 94.4%, buses/coaches for 2.7% and walking/cycling for 1.5%.

The road system is also dominant in terms of the freight transport task, but significantly less so than for person transport. In 2018/19, road transport accounted for 77% of the total freight transport task, with rail accounting for 11% (but for a higher proportion of heavy freight movements) and coastal shipping (including the Cook Strait ferries) for the remaining 12%.

Overview of financial and economic costs and charges

The Study assessed both the financial and economic impacts of transport. **Financial** costs and charges are the costs and prices faced by users, infrastructure providers and service suppliers, expressed in dollars. The Study was particularly interested in the costs of government-provided infrastructure and services, and in the extent to which the prices charged to users cover these costs; and it was also interested in the total costs faced by users and the user costs per unit of output (i.e. cost per person-km or per net tonne-km).

The **economic** analysis considers the resource costs consumed or incurred in the transport task. This includes the direct costs to the user, the costs incurred through the use of transport infrastructure, and also the social and environmental costs (often referred to as externalities) associated with travel. Payments and their associated revenues were considered to be transfer payments and were not of interest for the economic analyses. Key measures of economic cost efficiency for person transport are total economic costs per person-km and for freight transport total economic costs per net tonne-km.

The Study addressed the economic and financial assessments within a common framework, given that both aspects depend in large measure on a similar and overlapping set of impacts. The main cost and cost-related impact categories are shown in Table S.2.

Main category	Sub-category	Cost nature
Revenue from charges	Road user charges Petrol excise duties Toll charges Parking fees ACC levies and insurance	Financial
Infrastructure-related costs	Capital costs (including economic return on capital) Infrastructure operations and maintenance	Financial and economic
Operations costs (related to vehicles and service provision)	Vehicle ownership costs Vehicle repairs and mtce Fuel	Financial and economic
Parking costs	On street parking (paid) Commercial/council (off-street) parking	Financial and economic
	On-street parking (unpaid) 'Free' parking (staff/clients/shoppers) Private parking (e.g. garaging)	Economic
Travel time costs	Business-related travel Other person travel (incl commuting) Truck travel time Freight inventory costs (incl perishables)	Economic
Social and environmental impacts	Transport accidents Greenhouse gas emissions Noxious gases Noise Ecology and biodiversity Health/quality of life	Economic

Table S.2 Categories of costs and charges covered in the Study

Table S.3 summarises our analyses (covering the cost categories listed in Table S.2) of the total and average economic (including environmental and social) costs and financial costs for **the four main domestic surface transport sectors**, i.e. NZ road and rail transport sectors (each divided between person movements and freight movements), urban public transport, and 'sustainable' modes (walking and cycling). Note that this table does **not** cover water-based transport (coastal shipping and Cook Strait ferry services), long-distance coach services or rural school transport services (run by the Ministry of Education) – which were all included in the Study, although not in the same depth as the four main sectors.

The first numerical row (labelled row 1) of Table S.3 summarises the transport task estimates, in terms of the primary measures of output for the transport sector, i.e. passenger kilometres (pkm) for person transport and net tonne kilometres (ntk) for freight transport. The key economic and financial inputs then follow in rows 2-13, the summary of the economic assessment in rows 14-15, and the summary of the financial assessment in rows 16-20³. The following sections summarise and comment first on the financial assessment findings followed by the economic assessment findings.

³ A more detailed version of this table is provided in Appendix 3 of this report.

Table S.3 Economic and financial analysis summary 2018/19

			Person Transport Freight Transport											
				Road	Rail	Urban	Walk/	Total		Road Truck		Rail / Total		Total all
			Units	(Car, LV)	(Long dist)	PT	cycle	person transport	Units	Non HCV2 trucks	HCV2 trucks	Wagon	freight transport	modes
1	Transport ta	ask	pkm (mill)	58,405	73	1,588	945	61,011	ntk (mill)	10,500	20,300	4,407	35,207	
2		Infrastructure and services:												
3		Public sector costs - infrastructure & services	\$mill pa	4,538	46	1,306	1,496	7,385	\$mill pa	1,406	917	1,042	3,365	10,751
4		Parking	\$mill pa	14,656				14,656						14,656
5		User economic costs:												
6		Vehicles & operations	\$mill pa	20,536	-	-	87	20,623	\$mill pa	18,332	3,787	0	22,119	42,742
7	Economic costs	User time	\$mill pa	31,116	12.5	768	1,793	33,689	\$mill pa	15,368	2,290	0	17,658	51,347
8		Social/environmental costs:												
9		Accidents	\$mill pa	4,979	0.9	n.a.	1,116	6,096	\$mill pa	337	53	15	405	6,501
10		Health impacts (benefits)	\$mill pa	-	-	-	(2,353)	(2,353)	\$mill pa		-	-	-	(2,353)
11		Environmental (GHG, air qual, noise, biodiversity)	\$mill pa	2,299	0.4	87	-	2,387	\$mill pa	959	332	90	1,382	3,769
12		Total economic costs	\$mill pa	78,124	59.5	2,161	2,139	82,483	\$mill pa	36,403	7,379	1,147	44,929	127,412
13	Financial costs	User charges (excl parking but incl tolls)	\$mill pa	2,503	30.9	360	0	2,894	\$mill pa	801	697	403	1,900	4,794
14	Economic costs	Econ costs per pkm or ntk (excluding parking)	cents/pkm	108.7	81.5	136.1	226.3	111.2	cents/ntk	343.4	36.4	26.0	127.6	
15	Summary	Econ costs per pkm or ntk (including parking)	cents/pkm					133.8						
16		Total user charges (excl parking)	\$mill pa	2,503	30.9	360	n.a.	2,894	\$mill pa	801	697	403	1,901	4,794
17	Financial	Financial surplus/(shortfall) (i.e. Public sect costs - User charges)	\$mill pa	(2,035)	(14.8)	(946)	(1,496)	(4,492)	\$mill pa	(605)	(220)	(639)	(1,465)	(5,957)
18	costs summary	User charges per unit- excl W&C	cents/pkm	4.3	42.3	22.7	n.a.	5.1	cents/ntk	7.6	3.4	9.1	5.4	
19		Financial surplus/(shortfall) per pkm or ntk	cents/pkm	(3.5)	(20.3)	(59.6)	(158.3)	(7.4)	cents/ntk	(5.7)	(1.1)	(14.5)	(4.1)	
20		User charges / Public sector costs (%) – excl W&C	%	55.2%	67.6%	27.5%	0.0%	49.1%	%	57.0%	76.0%	38.6%	56.5%	

Summary of financial assessment findings

Table S.3 includes a summary of the financial assessment for person and freight transport, by the main road and rail modes, i.e. for person transport, by car/light vehicle, by urban public transport (bus, train, ferry), by walking/cycling, by long distance rail; and for freight transport by road (truck) and by rail (freight wagons). The key estimates relevant to the financial assessment are given in the following rows of the table:

- Row 1: Total transport task
- Row 3: Public sector costs relating to infrastructure and services
- Row 13: Financial costs to users (excluding parking)
- Row 17: Financial subsidy (= row 3 row 16)
- Row 18: User charges per pkm or ntk (excluding walking and cycling)
- Row 19: Financial subsidy/(person km or net tonne km)
- Row 20: Financial cost recovery ratio (being user charges/public sector costs).

We comment first on these results at an aggregated level, then in rather more detail for the main modes, comparing both between modes and between person transport and freight transport.

Note that the financial assessment **excludes**⁴:

- All environmental and social costs (rows 8-11); and
- Vehicle parking costs (row 4). While these parking costs are substantial (estimated at some \$14 billion), they relate mainly to uncharged shopping centre car parks, kerb-side parking and private garaging. They are excluded from the financial assessment as insufficient information is available to estimate the proportion of the total (economic) parking costs that is paid by parking users (directly or indirectly).

The all-modes total public sector costs for infrastructure and services (but excluding car parking) were some \$10.8 billion (row 3). With the total user charges (row 16) contributing just under \$5 billion to these costs, resulting in an overall financial cost recovery of just under 50%. Breaking down these aggregate figures between person transport and freight movements, the \$4.8 billion total user revenue is earned about \$2.9 billion from person transport (average cost recovery 49%) and \$2 billion from freight transport (average cost recovery 56%).

By the main person travel modes, charges for car/light vehicle travel average 4.3 c/pkm (covering 55% of the public sector costs), and for urban PT 22.7 c/pkm (covering just under 28% of the public sector costs). For freight transport, user charges average 9.1c/ntk for rail shipments (sufficient to cover 39% of public sector costs) and for heavy truck (HCV2) shipments 3.4c/ntk (covering 76% of public sector costs).

It is important to note here that these comparative figures relate to the public sector costs only without regard to the different splits for the different modes between public sector and private sector costs. For example, for road-based person travel, the majority of the total costs are incurred directly by the private sector (through fuel purchases by individual motorists etc), whereas for an equivalent trip by public transport, all financial costs are incurred in the public sector. The implication is that any figures for the cost coverage of public sector costs from user revenues need to be treated with extreme caution in comparisons between modes.

⁴ GST is also excluded from all the financial and economic assessments.

We should also note here that these economic cost estimates allow for the opportunity cost of capital, based on an annual return (4% in real terms) on the value of the existing road network, and similarly for the rail network, and a similar return on other public assets. For the roads sector in particular, this approach differs from the way that NZ roads are currently funded, which is on a 'pay as you go' (PAYGO⁵) basis, under which funding levels relate more-or-less directly to capital expenditure on the road system on a year-by-year basis.

Relative to the assessment results given here, adoption of the PAYGO approach for roads would result in modest reductions in the cost figures used, resulting in modest (apparent) improvements in cost recovery performance and other assessment indicators – but it would undermine any comparisons between the performance of the roads sector and the other transport modes. We should emphasise that our economic return on capital approach has been adopted for Study purposes only so as to provide comparability between the modes: it is not intended to suggest any move from the PAYGO model to an economic return on capital approach (consideration of any such move was well outside the DTCC terms of reference).

One of the questions that policy makers are interested in is around the extent to which the current transport charging system recovers the public sector financial costs. While direct comparison between modes is not appropriate because the public sector pays for different components for different modes (e.g. vehicle operation costs are paid by the public sector for rail transport as part of the service provision costs, but such costs are met by the private users for private transport). Despite these comparison difficulties, estimates of the level of financial cost recovery within each mode are still of value to inform further decision-making on cost recovery policies for that mode. In this regard, the comparative figures between modes for financial subsidy (per pkm or ntk) are likely to be more useful for modal comparisons than the cost recovery ratios (i.e., user charge/public sector costs).

Summary of economic assessment findings

Total economic costs

Table S.3 shows that the total economic costs in 2018/19 for the four main domestic transport sectors combined were some **\$127 billion** (including parking). This figure covers: (i) public sector costs involved in transport system provision and maintenance (row 3); (ii) transport operator and user costs (both time costs and money costs) (rows 5-7); and (iii) social and environmental costs (rows 8-11), covering transport accident costs, public health costs and environmental costs (including costs associated with greenhouse gas and other atmospheric emissions). The total economic cost of \$127 billion represents an average over the total NZ population of **\$25,000 per person** during 2018/19.

Some key features of the Table S.3 results (all on an annual basis, year 2018/19) are as follows:

- Of the total economic costs (\$127 billion), \$82 billion (64%) relates to person transport, \$45 billion (36%) to freight transport.
- The costs associated with the road system and its use (i.e., excluding environmental and health costs) dominate the total economic costs (row 12) for both person and freight transport. For person transport, they account for 95% of the total (\$78 billion out of \$82

⁵ A (more-or-less) standard economic return on capital approach has been adopted throughout DTCC for both the economic and financial assessments of each of the main modes. Its key feature is the application of a 4% pa (real terms) cost of capital applied to the optimised depreciated replacement cost (ODRC) of the assets involved.

billion). For freight transport, they account for 97% of the total (\$43.7 billion out of \$44.9 billion).

- Looking at person transport overall, the total of \$82 billion (row 12) comprises \$78.1 billion related to motorised road traffic (principally cars and other light vehicles), \$2.2 billion for urban public transport (bus, train, ferry), \$2.1 billion for walking/cycling and a small amount for long-distance rail passenger services.
- Similarly, looking at freight transport overall, the total economic costs (row 12) for road freight are estimated at some \$45.0 billion, of which \$7.4 billion relates to the heaviest category of trucks (which potentially compete with rail for longer distance/heavy freight movements). The economic costs for rail freight are much lower, at some \$1.1 billion.
- This dominant role of the road system applies similarly to the market shares for the three main modes. For land-based freight movements (in ntk), road freight accounts for 87% of the market and rail freight 13% (but rail has a considerably larger share of the heavy freight/long-distance market). For motorised person movements (in pkm), road travel has a market share of 97.1%, urban PT (including urban rail) a share of 2.6%, and long-distance rail a minimal share of 0.1%.⁶

Further assessment and commentary on economic costs

Aside from parking costs and health-related benefits, between one-third and half of the economic costs for person travel in the roads sector (49%) and the UPT sector (36%) relate to travel time. In the roads sector, this includes a sizable share related to car-based business travel and in-work (paid) time. In the UPT sector, most trips are for non-business purposes and their travel time is largely unpaid (but still valued in economic terms).

For the roads sector overall, the costs associated with the environmental impacts (GHG and local emissions, noise and ecology/biodiversity impacts) account for some 3.6% of total roads sector economic costs, while the costs of road accidents comprise a further 7.8% of the economic costs. For the UPT sector, the costs of environmental impacts again account for around 4% of total economic costs, principally as a result of the rather mixed performance of urban bus operations in terms of GHG and local emissions.

The relationships between the key components of the total economic costs for each sector and that sector's total transport task are of significant interest (i.e. economic costs per unit of transport task, refer Table S.3, rows 14 and 15), notably the following:

- For **freight movements**, the economic cost for rail freight transport averages 26c/ntk, which may be compared with an average of 36.4c/ntk for heavy trucks (HCV2). However, it should be borne in mind that these two figures are very much averages over a wide range of situations. For a specific bulk/heavy commodity movement, it cannot be concluded that the rail cost (or charge) will necessarily be lower (in economic terms) than that for road transport. It should also be noted here that there is a very wide variation in average costs/ntk according to truck type, commodity, origin-destination locations etc; and that many freight movements are not suitable for transport by rail as their origins and destinations are not close to facilities for loading, unloading or transferring freight consignments.
- There is a substantial spread in the total economic cost per ntk for road freight, affected by commodity carried, the type of vehicle used and multiple other factors: average economic costs may be as high as 500 c/ntk or even higher for light vans, parcel deliveries etc.

⁶ These market share figures relate only to the three main modes for which comprehensive comparative analyses (as in Table S.1) has been undertaken. They therefore take no account of walking, cycling, flying, coastal shipping, micro-mobility and other 'minor, modes.

- Environmental and social (including accident) costs are some 3.8% of the road freight economic costs and 9.2% for rail.
- For **person movements**, the average economic cost of 134c/pkm for road (mainly car/light vehicle, row 15) travel is very similar to the 136c/pkm for urban PT travel. However, we would be particularly cautious about comparisons in this case: (i) the UPT figure covers only the PT leg (stop-to-stop) of the trip, with no allowance for access and egress travel time or costs; while (ii) the car/light vehicle figure includes an average economic cost figure for car parking, which in most cases is likely to overstate the parking costs incurred by car users, except perhaps in the case of some CBD-oriented trips.
- The average rate for the 'sustainable' person transport modes is 122c/pkm for cycling and 272c/pkm for walking. These results illustrate that a key factor influencing these economic cost relativities between modes is the trade-off between time costs and monetary and other costs. While walking/cycling involve relatively low levels of public expenditure or of user financial expenditure (in either capital or operating /maintenance terms), their time costs are relatively high, particularly for walking, for other than shorter-distance trips.

As a general comment, we would advise considerable caution in the interpretation of these modal relativities: inevitably, they represent averages over a wide variety of trip types in a wide variety of circumstances. They do however offer a methodology that could be adapted for wider use in the evaluation of urban transport policies and options, as a component of urban transport studies.

We should also note here that these economic cost estimates allow for the opportunity cost of capital, based on an annual return (4% in real terms) on the value of the existing road network, and similarly for the rail network, and a similar return on other public assets. For the roads sector in particular, this approach differs from the way that NZ roads are currently funded, which is on a 'pay as you go' (PAYGO) basis, under which funding levels relate more-or-less directly to capital expenditure on the road system on a year-by-year basis.

Relative to the assessment results given here, adoption of the PAYGO approach would result in modest reductions in the cost figures used, resulting in modest (apparent) improvements in cost recovery performance and other assessment indicators – but it would undermine any comparisons between the performance of the roads sector and the other transport modes. We should emphasise that the economic return on capital approach has been adopted for Study purposes only so as to provide comparability between the modes: it is not intended to suggest any move from the PAYGO model to an economic return on capital approach (consideration of any such move was well outside the DTCC terms of reference).

Marginal costs

The results in the preceding sections are based on average or **fully allocated costs (FAC).** FAC are relevant to cost comparisons and questions of whether users collectively are paying all the costs that they impose. Where there are multiple users there is also the question of whether each user (or user group) is paying their fair share. However, many policy questions in the transport sector are concerned with how the costs of a transport service would vary in response to a change in transport demand, rather than with the costs for an 'average' demand situation.

This report distinguishes between two key marginal cost concepts - short run marginal costs (SRMC) and long run marginal costs (LRMC):

• The short run marginal cost (SRMC) is defined as the change in the total social costs (i.e. the sum of private and external costs) resulting from a unit increase in use (including any future costs caused by current use), based on the current level of infrastructure provision.

Where appropriate we distinguish between (i) the Social Marginal Cost (SMC), which is the short run marginal cost in the absence of any intervention by the infrastructure owner or service supplier, and (ii) the SRMC, which includes such intervention. The SMC is particularly relevant in the case of congestion; while it is also a useful concept for other modes and circumstances as it enables the "with" and "without" intervention costs to be compared.

SRMC is sometimes advocated in the economic literature as the primary basis for pricing, as it provides a guide to the most efficient use of existing infrastructure. A price equal to the SRMC ensures that the benefit to the user equals or exceeds the cost of provision; while SRMC = LRMC (defined below) is a condition for optimal provision of infrastructure.

• The long run marginal cost (LRMC) is defined as the change in the total economic costs resulting from a unit change (usually an increase) in use, allowing for capacity and infrastructure provision being optimally adjusted (in the long run) to match the level of use. LRMC is seen as having a primary role in longer-term investment decisions. It may also provide a good guide to the equilibrium value of the SRMC.

Unlike FAC/PAYGO, neither SRMC nor LRMC guarantees full recovery of actual (financial) costs or expenditures. The revenues generated may be greater than or less than the expenditure on network operation and maintenance. While not covered in this Study, one approach ('MC Plus') involves applying a mark-up to SRMC to achieve the stated cost recovery or revenue target: this may be achievable in situations where the potential customers are not highly price sensitive.⁷

SRMC and SMC, and to a lesser extent LRMC, tend to be very location and time-specific. It is thus not possible to report definitive numbers. Table S.4 summarises the Study findings in relation to marginal costs for those modes, and situations for which specific assessments were undertaken as part of the DTCC Study.

⁷ Other variants of the MC Plus approach exist (e.g., involving 'Ramsey pricing'), but are not addressed further in this report.

Mode	MR section	Main Report coverage and summary	Units	Summary of findings					
Road - Accidents	4.10.5	 Analysis of (SR)MC accident costs, especially in congested/uncongested conditions (notable for conclusions on negative MC in congested conditions). 	congested/uncongested conditions (notable for conclusions on negative MC in congested conditions).(or PCU) kilometrevs traffic volumes ar speeds in range of congested/unconges situations.						
Roads - Road wear	4.11	 Social marginal cost (SMC) assessed as impacts of additional traffic with zero investment. Cost depends on road condition and traffic volume. SRMC assessed as additional costs to restore road to original condition in response to additional traffic: costs vary substantially with base conditions. LRMC reflects costs of additional road strength to cater for additional heavy traffic: cost levels found to be sensitive to heavy traffic volumes. 	Per equivalent- standard axle (ESA) kilometre	Estimates vary with traffic volume and road surface conditions and hence can't be generalised					
Roads - Congestion	4.12	 Addresses the MC for road users and the road agency arising from marginal increases in the demand for road travel (resulting in increased congestion). SRMC (same as SMC in this case) estimated through function relating travel speeds to traffic density: SRMC found to be very sensitive to traffic volumes. LRMC on any road section estimated based on capital costs of providing increased capacity (e.g. additional lanes) compared with resulting reductions in travel times. Investment in increased capacity warranted (in economic terms) where LRMC < SRMC. 	Per vehicle (or PCU) kilometre	SMC easily calculated based on difference between congested and uncongested travel times Varies with location and time of day Case study: for Auckland CBD SRMC ~ \$33 per peak trip entering CBD.					
Rail - Cost variability	5.5	 Analysis of rail (non-urban) cost structures between long run variable capital and operational costs (LRMC) and fixed costs. 		narginal costs withheld by mercial sensitivity reasons					
Urban PT - Financial assessment (WLG Bus)	6.4.3	 Supply-based analysis, assessing gross cost impacts of increases/decreases in bus service levels, for peak and off-peak periods. Demand-based analysis, assessing marginal costs to the authority of catering for exogenous changes in passenger demand, for peak and off-peak periods. 	Per vehicle- km, passenger-km	Peak MC generally higher than average financial cost and off-peak lower, because of spare labour and vehicles in the off- peak					
Urban PT - Economic assessment (WLG Bus)	6.4.4	 Demand-based analysis of changes in bus operator costs and user costs resulting from authority adjusting bus service levels in response to (exogenous) changes in demand. 	Per passenger- kilometre	User economies of scale ('Mohring' effect) provide primary justification for PT subsidy					
Long- distance coaches	7.5	• Commentary on the extent to which long-distance coach levels of service, and hence operator costs, are likely to respond to exogenous increases/decreases in passenger demand.	Per passenger- kilometre	Marginal vehicle operating costs estimated as close to the average costs					
Roads - Traffic noise	11.3.4	 Assessment of SRMC changes in traffic noise costs resulting from marginal changes in traffic volumes (existing network) typically found that noise MC (per marginal vehicle) is 20%-30% of average noise costs. No LRMC assessments undertaken (e.g. relating to road widening or new road capacity): results likely to be very situation-specific 	Per person kilometre (pkm); per vehicle kilometre (vkt); per net tonne kilometre (ntk)	Vary with location, speed limit and traffic volume. Typical ranges: 0.18c to 1.20c per vkt, 0.26 to 0.77 per pkm, 0.07 to 0.56 per ntk					

 Table S.4: Overview/summary of DTCC marginal cost analyses

Chapter 1 Introduction to the DTCC Study – Setting the Scene

1.1 This report

This is the Main Report of the NZ Domestic Transport Costs and Charges (DTCC) Study. The Study was commissioned by the Te Manatū Waka NZ Ministry of Transport and undertaken by a consultant team led by Ian Wallis Associates Ltd.

The consultancy work involved extensive discussions with and provision of information by Te Manatū Waka, other central and local government agencies involved in the transport sector, and several other interested parties. Draft study outputs have been subject to peer review, principally by the University of Leeds (UK) Institute for Transport Studies, and also by NZ-based subject matter experts (principally from Waka Kotahi).

An earlier draft version of this report was released in August 2022, as the basis for stakeholder engagement and feedback from interested parties and individuals. Five presentation and discussion sessions were held with transport sector stakeholders and other interested groups and individuals. The further work undertaken since the draft report has taken account of the comments received and has also involved further technical analyses and refinements across many aspects of the Study.

1.2 Overview of Study scope

The DTCC is the first comprehensive assessment of transport costs and charges in New Zealand since the Surface Transport Costs and Charges Study (STCC) was completed in 2005. The STCC was a 'baseline' analysis of the costs of the transport system(s) for the movement of persons and freight within NZ for year 2000/01. It focused on the financial and economic costs of the road and rail systems, at both aggregated and segmented levels, and on how the charges levied on users and other parties related to the economic and social costs they imposed.

The scope of the DTCC Study is considerably wider than that of STCC; in addition to road and rail, DTCC covers a wider selection of transport modes/market segments, including:

- urban public transport (bus, train, ferry) services
- active travel modes principally walking and cycling
- other road-based transport modes not covered in STCC ride-hailing (including taxis) and micro-mobility (scooters etc)
- domestic sea freight transport.⁸

Further, and complementary to this wider selection of transport modes, DTCC's consideration of economic (including environmental and social) costs is wider in three main respects, involving:

⁸ It was originally intended that DTCC would also cover domestic aviation. However, largely because of the Covid-19 pandemic, it proved difficult to obtain the required information from Air New Zealand and other airlines serving the NZ domestic air passenger market: therefore, the work on the domestic aviation sector did not proceed beyond initial investigations.

- a more detailed assessment of environmental costs (including greenhouse gas emissions;
- the inclusion of the relative health cost implications of the different transport modes; and
- an appraisal of car parking costs and user charges, focused on the main metropolitan areas.

DTCC is primarily concerned with the financial, economic, social and environmental costs and impacts of the current NZ transport system, together with the associated user charges. It does not include an assessment of the benefits to transport users (or other parties) of their travel decisions (but noting that the distinction between transport system economic costs and transport user (dis)-benefit items is not always clear-cut).

The DTCC methodology was developed in the light of the different types of costs, charges and impacts that exist across the domestic transport sector, in terms of modes, market segments and having regard to differing levels of data availability. The organising framework for the Study, as shown in Table 1.1), summarises the scope of the work within three main topic groups, i.e. generic (cross-modal) topics, modal topics and impact topics. A total of 25 detailed working papers were prepared, covering the majority of these topics: a full listing of these papers is provided in Appendix 2.

1.3 DTCC outputs and potential applications

Transport costs and charges data is important for a wide range of transport policy analyses. The Study collected important information for determining the effectiveness and efficiency of different modes of transport.

The outputs of the DTCC study are not intended to directly deliver specific answers to transport policy questions. Rather, the Study will contribute to the transport sector's understanding of how specific modes, and to the extent possible, specific sub-sets within modes (types of users, vehicle types, fuel types): (i) impose costs on New Zealand's economy, environment, and population; and (ii) to what extent those costs are 'met' by charges (if any) paid for transport system use.

The level of disaggregation of the study outputs will therefore help answer a range of transport policy questions, including those set out in the Te Manatū Waka Transport Evidence-Base Strategy⁹. More specifically, the Study outputs have the potential for application in addressing a range of current and future policy issues related to the New Zealand transport system. When used with other tools and data, the DTCC outputs can help with:

- Policy problem definition by helping to quantify and monetise the size of a wide range of transport impacts (such as emissions and safety).
- Multi-modal policy and investment assessment by informing better utilisation of the existing network to increase productivity gains and economic benefits.
- Assessment of greenhouse gas emissions and other transport system 'externalities' by providing better understanding of the social and environmental impacts of the transport system.

⁹ Ministry of Transport: Transport Evidence Base Strategy (December 2019)

• Assessment of the transport funding and charging system – by informing the level of charges required to ensure assets can be maintained, renewed, upgraded and/or expanded.

Some examples of key policy questions for which the DTCC Study could provide essential inputs include:

- What are the values of existing infrastructure assets? What are the costs associated with their maintenance, operation and renewal? What are the long-term financial implications for maintaining the network or system?
- What are the current levels of subsidies relative to the total costs of service provision?
- What are the average financial, social and full economic costs per passenger kilometre and tonne kilometre by mode, for specific market segments and/or corridors? What are the corresponding incremental/marginal and total costs?
- What is the time-related cost of freight by mode and market segment?
- What are the social costs of transport GHG and harmful air emissions, noise, accidents, health and well-being by mode?
- Are transport policies, projects or programmes delivering value for money?
- What are the sizes of the policy problems being addressed?
- What are the potential economic, social and environmental benefits from the adoption of specific transport policies, strategies and interventions?

1.4 Study documentation and reporting

Since the start of the Study, the following documentation has been prepared by the consultant team:

Scoping report (May 2020).

Working Papers. A series of 25 detailed papers, mostly on a modal basis, were prepared over the period May 2020 – June 2022. A detailed listing, including the authors of each paper, is given in Appendix 2. All Working Papers have been subject to review by the international peer reviewers and local subject matter experts from WK and other NZ government agencies.

Main Report (May 2023) i.e., this report. This provides a summary of the Study findings based on the Working Papers. It brings together the findings from all aspects of the Study, including cross-modal comparisons.

Table 1.1: Organising framework for DTCC topics

					Coverage of impacts							
				Working				E	nvironment	al & social co	osts	
Modal group	Mode	Freight/ Person	Report section	Paper reference	Economic costs	User charges & revenues		Health	Local emissions	Global emissions (GHG)	Noise	Biodiversity & biosecurity
					Multiple	Multiple	D1, C11.6	D3	D4	D4	D5	D6
Roads	Cars, Light vehicles	Р	4	C4, C5, C7	*	*	*		*	*	*	*
	Motor-cycles	Р	4	C4, C5	*	*	*		*	*		*
	Trucks	F	4	C4,C5	*	*	*		*	*	*	*
	Bus & coach (non-urban)	Р	7	C6	*	*	*		*	*	*	*
	Personal transport (taxi & ride-hail)	Р	8.2	C9	*	*			*	*	*	*
	Micro-mobility (scooters etc)	Р	8.3	C10	*	*						
	Walking	Р	9.2	C8	*			*				
	Cycling	Р	9.2	C8	*			*				
Railways	Rail freight	F	5	C11	*	*	*		*	*	*	*
	Rail passengers (long distance)	Р	5	C11	*	*	*		*	*	*	*
Urban public	Urban bus	Р	6	C12	*	*	*		*	*		
transport	Urban rail	Р	6	C12	*	*	*		*	*		*
	Urban ferry	Р	6	C12	*	*	*		*	*		
Coastal	Coastal freight	F	10.2	C14	*	*	*		*	*		*
shipping	Cook Strait - Freight	F	10.3	C15	*	*						
	Cook Strait - Passenger	Р	10.3	C15	*	*						
	l	I										

1.5 Study participants

Client. Te Manatū Waka Ministry of Transport (NZ)

Consultants. The consultant project director was Ian Wallis (Ian Wallis Associates) with management/administrative support by Barry Mein (Mein Consulting). The detailed work, including preparation of the Working Papers, was undertaken by subject matter experts from a number of consulting companies (Iargely based in NZ and/or Australia). Details of these companies and their principal consultants responsible for each Working Paper are set out in Appendix 2.

Peer reviewers - international. International peer review was undertaken by the Institute for Transport Studies (ITS), University of Leeds (UK). The Institute is widely recognised as one of the leading transport sector academic groups internationally and has particular expertise in urban transport policy, economic and evaluation aspects. The ITS inputs were led by Professor Richard Batley and Professor Peter Mackie and supported by the wider ITS research team. Their role included detailed review of all the Working Papers and of earlier versions of this report.

Supporting reviewers – NZ. Most of the Working Papers were also reviewed by selected subject matter experts from NZ government agencies (principally Waka Kotahi). Their inputs were seen as important to ensure that local knowledge and perspectives were brought to bear in the Study.

Other stakeholders/interested parties. At an early stage in the Study, NZ-based organisations and individuals were invited to register their interest in being involved and consulted in the Study, either in general or on particular topic areas. A number of meetings/presentations and discussions were held with the parties who expressed their interest over the course of the Study.

1.6 Confidentiality considerations

In general, all significant reports, Working Papers, etc prepared by the Study team will be available publicly on the Te Manatū Waka website.

Some complete Working Papers and limited sections of some other Working Papers will not be published or will be redacted at the request of specific parties, on the grounds of being 'commercial in confidence' to those parties. This recognises that some parts of the NZ transport sector operate in competitive supplier markets.

Chapter 2 Overview of NZ Domestic Transport Sector

This chapter provides a brief, but essential, context for the Study, particularly for readers who are not familiar with the way the NZ domestic transport sector is structured, organised, regulated and funded. An overview of the sector is set out in Table 2.1:

- This covers the four main domestic transport 'modes', i.e., the road system, the rail system, urban public transport (covering urban bus, rail and ferry services) and active modes (including walking and cycling)¹⁰.
- For each mode, it covers in turn: the assets involved and their ownership; the operations and the services provided; regulatory aspects, principally relating to safety requirements; and funding principles and arrangements.

Understanding the different nature of each mode is crucial to the Study, as this is a major determinant of the roles of the public and private sectors, of the incidence of public subsidies, and of the modal financial and economic performance.

The descriptions in the table relate primarily to the situation in financial year 2018/19. It should be noted that some changes in policy, regulation and funding have been (or are being) made since then, particularly in regard to rail policy: these are set out in more detail in the relevant report chapters.

¹⁰ The Study also reports on estimates related to coastal shipping. While domestic aviation along with coastal shipping share a similar regulatory model, detailed consideration of the aviation sector was outside the scope of DTCC.

Table 2.1: Overview of NZ domestic transport sector

Roads	Rail	Urban Public Transport	Coastal Shipping and Domestic Aviation		
Assets and ownership					
Road network and infrastructure: publicly owned via WK, LGAs (some via PPPs).	Rail network (3,500 route km); rail infrastructure & rolling stock (freight and passenger). Govt ownership via KiwiRail. Metro areas: urban passenger rolling stock owned by LGAs (refer UPT column).	Urban rail rolling stock owned by RCs; services use KR-owned track under cost-sharing arrangements. Buses, ferries: owned privately (but AKL Council negotiating to buy into current commercial ferry operations) Selected major infra projects (e.g., CRL) primarily NZ Govt responsibility.	Ports: mainly owned by LGAs. Ships: private ownership (KR owns its Cook Strait ferries) Airports: mix of local/central government and private ownership. Aircraft: mixed Govt/private (Air NZ) ownership, or fully private.		
Services and operations					
Comprehensive public road network Cars, buses/coaches, m/cycles, trucks – all private.	Mainly freight, limited passenger/tourist services. KiwiRail sets freight rates and passenger fares.	Bus services in all main towns; Passenger ferry services mainly AKL; Urban rail passenger services AKL, WLG. Periodic competitive tendering for private operator contracts. Service specs and fares defined by RC, gross cost contracts, revenues returned to RC.	 Shipping – Cook Strait ferries: provide services for passengers, freight, rail movements Shipping – other: limited domestic freight services – containers, specialist freight. Aviation – strong network of domestic passenger services (some freight/mail services). 		
Safety regulation					
MoT, WK, Police, TAIC.	WK, TAIC Safety management: KiwiRail.	Safety requirements and other standards defined in operator contracts, monitored by regional council	Maritime NZ, Civil Aviation Authority, TAIC.		
Funding principles and arrangen	nents	·	·		
Road network maintenance and improvements funded on PAYGO principle (mainly through NLTF, with LG contributions to local road funding). Separate govt funding for selected major projects (e.g., NZ Up programme). Revenues mainly from RUC (diesel) and FED (petrol). Some PPPs and toll roads; also AKL regional fuel tax.	Government subsidises network via NLTF. Medium-term intention is that Govt would fund the fixed network costs, while KR would recover the variable traffic-related costs from user revenues. RCs pay KR track access etc charges for use of metro network and facilities for their passenger operations.	Funding through combination of fares, local/regional rates, Govt (NLTF). Previous target of minimum 50% cost recovery from fare revenues no longer maintained. Government grants for selected large projects, e.g. CRL, LRT, urban rail infrastructure improvements.	Sector operates on a largely commercial basis. Some payments from LGA owners (for developments), or to them (dividends). LGA and/or central government subsidies for smaller airports.		

Note: For abbreviations and glossaries, see Appendix 1.

Chapter 3 Economic Principles and Methodology – Transport Services and Infrastructure

3.1 Overview

Most New Zealand transport services are provided by private operators on a commercial basis. Government owned KiwiRail has a commercially focused mandate. However, as in many other countries subsidy is provided to urban passenger transport and some rail services. There are no price controls and no restrictions on entry for privately-operated transport services provided on a commercial basis, other than basic health and safety requirements. The freight and long-distance public passenger transport markets are competitive ('competition in the market'), with prices largely dictated by the market. Urban public transport services are subject to periodic 'competition for the market', with the service requirements and fare levels being set by the regional council, and the successful operator being selected through a periodic competitive tendering process.

Road transport operators, public transport operators, coastal shipping and airline companies pay the resource costs of operating their services plus charges for their use of infrastructure that is provided by other parties (Waka Kotahi, local authorities, airport and port companies). Their total costs are reflected in the fares and rates they set (along with any PT subsidies). For the railway system, the infrastructure is provided internally by KiwiRail. KiwiRail aims to cover its costs (which, in the study year, included its infrastructure costs and operating costs) by pricing based on what the market will bear, although in practice significant subsidies have been paid.

For consistency we have used a rate of return for infrastructure of 4% for both the economic and the financial analysis and across all modes. This may differ from the weighted average cost of capital in particular modes that will reflect the market evaluation of risk and other factors.

The cost and charging methodologies addressed in this report are relevant to infrastructure providers, between them and operators, and for public policy analysis of related subsidies.

3.2 Economic approach to accounting for costs – cross-cutting issues

3.2.1 General issues

All transport operators face direct operating and maintenance costs such as wages, energy, repairs and maintenance, taxes, insurance, and payments to suppliers. These (along with revenues) are recorded in profit and loss accounts and cash-flow statements. For commercial and policy decision-making, this financial cost information needs to be supplemented with analysis of wider economic and social costs – the main subject of this chapter.

An economic approach goes beyond the direct financial information and considers total costs over time. It considers both present costs and future costs caused by current activity – for example, increased use of a road or a railway will advance the time when refurbishment is needed, and that cost should be recognised in the current period rather than left until the period when the actual expenditure occurs (unless a decision has been made to run the asset down).

The economic approach also considers the opportunity cost of capital – that is, the return (like an interest rate) that the investor requires in order to invest in that activity rather than elsewhere. Methodologies for this are discussed below, notably the weighted average cost of capital (WACC) approach.¹¹

3.2.2 Social costs

A further broadening of cost coverage, which has attracted increased attention in recent years, involves the inclusion of full social costs – that is, the full economic and social (including environmental) costs borne by wider society as a result of the transport activity. The main social costs are greenhouse gas emissions, particulate emissions, congestion, accidents and noise. Some transport activities add to these social costs, while others may reduce them: for example, a good public transport system can result in less use of cars, and hence in reductions in emissions, congestion etc.

An efficiency principle is that transport users should be faced with full information on the marginal (incremental) costs that their transport use imposes on the wider community. In this way, users can make informed decisions about transport use with full information on the marginal costs they impose, such as pollution, safety and congestion.

One dimension of policy and accountability is what costs (and revenues) are relevant, and how they are measured. Another dimension is 'getting the prices right' – here there are choices to be made between full cost pricing and marginal cost pricing (and their various variants). These choices lie at the heart of transport policy-making and involve complex trade-offs between equity and economic efficiency objectives.

Methodologies for considering wider social costs may be more complex than those for direct financial costs. For example, the social costs caused by particulate emissions and noise are generally higher in densely populated areas than in the countryside (unlike the social costs of greenhouse gas emissions, which are independent of location and circumstances in which they occur). An additional vehicle imposes higher congestion costs on a busy road than on a lightly used road. Some safety-related costs may be imposed on other road users (e.g., a crash that harms third parties), while others are borne by the user and/or the wider community.

To sum up, costs can be considered in three categories, i.e.:

- financial costs,
- economic costs, and
- (net) social/environmental costs.

3.3 Economic approach to accounting for costs – mode-specific issues

3.3.1 Road system issues

Road transport infrastructure is provided by central government (via Waka Kotahi) for State Highways and by local authorities for local roads. It is funded through a 'pay as you go' (PAYGO) system, which recovers from charges to road users each year all (or most of) the infrastructure financial expenditure on the road system in that year. Revenues come from petrol tax, road user charges on diesel and (in future) electric vehicles, vehicle registration and

¹¹ In some public sector contexts, there may in practice be no such return on capital, but the government (and subsidy provider) itself faces borrowing costs which should be recognised.

relicensing fees. There is also a contribution from local authority rates for local roads, and in some years the government supplements this revenue with additional payments, e.g., from the Provincial Growth Fund.

The New Zealand (PAYGO) system is a particular example of what is commonly known as a fully allocated cost (FAC) approach to charging for the use of public road infrastructure: it is widely used internationally. Particular features of New Zealand's road financing system are that:

- Charges from the various revenue instruments are set to recover the expenditure on or related to roads (maintenance, capital upgrades, safety enforcement and a contribution to public transport) in the year in which the expenditure occurs.
- As capital investments are recovered (at the time of the expenditures) from annual revenues, no future depreciation or interest is charged.
- Costs are allocated between different classes of users by vehicle type using a Cost Allocation Model (CAM) that broadly reflects economic, accounting and engineering principles.

Non-financial costs (e.g., environmental costs resulting from particulate emissions or noise) may be caused by road users but are not generally recovered from road users individually or as a group (e.g., through a congestion pricing scheme). There are some exceptions to this (e.g., the ETS levy on fuel prices). However, users indirectly face mitigation costs incorporated in road investment, safety and maintenance work (e.g., through inclusion of noise barriers): the costs and benefits of such mitigation works are reflected in the allowance for Wider Economic Benefits included in cost: benefit calculations.

The current system of paying for roads is generally regarded (by economists) as inefficient¹² in that its charges are system-wide averages that do not reflect the costs imposed by specific users on specific routes. In the past such crude pricing may have been unavoidable because of the impracticality of monitoring road use in detail. Technological improvements such as telematics (vehicle monitoring systems) and electronic road pricing are now making more targeted pricing technically feasible and financially viable. But the balance to be struck between economic efficiency, cost recovery, equity (e.g. between user classes and rural v urban areas etc), flexibility, transparency and comprehensibility is ultimately a political matter, well outside the scope of this Study.

Road transport operations are funded by users of the road system, either directly or indirectly: directly in the case of private cars/light vehicle users, who pay through fuel taxes and other road user charges; and in other cases, indirectly through charges to customers set by road freight and bus/coach companies, which in turn pay road user charges (RUC) to the government.

3.3.2 Rail system issues

Rail infrastructure has been, and continues to be, funded primarily from government capital injections. Regional authorities also make contributions (through "track user charges") towards maintenance of track and other rail fixed assets in metropolitan areas (refer the next section for further details on the accounting/funding arrangements for metropolitan rail services).

¹² An efficient price is one which sets user charges so as to cover the marginal costs of supplying the service and creates the right signals to ensure that transport is only used when its benefits exceed its costs. Since network facilities such as roads and railways have high initial installation and fixed costs, this approach does not guarantee revenue will match expenditures in any one year or even over the longer term.

Recent new legislation provides for accounting separation within KiwiRail between infrastructure and operations, which will (among other factors) clarify the basis for track user charges. These charges will be paid initially by the customers of KiwiRail's operations arm and passed on as appropriate to their infrastructure side, to cover the variable costs of KiwiRail's provision of infrastructure services.

KiwiRail does make payments, through the costs of diesel fuel, towards some of the costs associated with the greenhouse gas emissions resulting from the burning of fossil fuels, as occurs in the roads sector. Apart from this, it does not make payments to cover other external costs such as air pollution, noise and biodiversity. These external costs arising from rail transport are generally small relative to the equivalent costs arising in the roads sector.

Further details of rail funding are provided in Working Paper C11.4.

3.3.3 Urban public transport issues

The regional authorities (including Auckland Transport) provide urban passenger services by rail (Auckland, Wellington), ferry (various regions, principally Auckland) and bus (all regions). In most cases, the required services are procured from private operators through periodic competitive tendering for contracts, which provide successful operators with route or corridor monopolies over the term of their contracts. Service levels and fares are determined by the regional councils, with fare revenues being collected by the operators and passed on to the councils.

Bus operators pay road user charges (on a comparable basis with truck operators) for use of the road network. For the metropolitan rail services, the two regional authorities have contracts with KiwiRail to share the costs (with freight services) of providing and operating rail infrastructure in their metropolitan areas.

Most of the public transport services are heavily subsidised, with on average less than 50% of their total costs being covered from fare revenues. The subsidies are funded through a mixture of regional/local rates and central government funding (through the NLTF). This applies to almost all services provided by the three PT modes, although some services in Auckland (principally by ferry) are provided on a commercial (non-subsidised) basis, with their operators being free to set their own fares and service levels.

3.3.4 Coastal shipping

Coastal shipping operates on a predominantly commercial basis, except for subsidies to some of the smaller ports. The shipping companies earn revenue from customers, face their own direct costs and pay port companies on a commercial basis for infrastructure services. There is relatively little government involvement in this sector

3.4 Marginal costing approaches – short and long run economic costs

This report considers three main alternative costing concepts that may be used to define the quantum of costs to be covered in land transport systems:

- Fully allocated costs (FAC) and the PAYGO variant currently adopted in the NZ roads sector
- Short run marginal costs (SRMC)
- Long run marginal costs (LRMC).

FAC/PAYGO (refer earlier Section 3.3.1) is the most common approach adopted internationally to charging for public road infrastructure. It has the advantage of relative simplicity and an appearance of fairness, with a focus on full recovery of financial costs on a year-by-year basis. An alternative to PAYGO is to capitalise investment expenditure using an economic return on capital approach. This tries to charge for the assets in the years of their use rather than the year of their acquisition. It is used by commercial operators including KiwiRail.

SRMC is defined as the change in the total social costs (i.e., the sum of private and external costs) resulting from a unit increase in use (including any future costs caused by current use), based on the current level of infrastructure provision. External costs include congestion, so SRMC is relevant to debates on the merits of congestion pricing. SRMC is sometimes advocated as the primary basis for pricing in the economic literature as it provides a guide to the most efficient use of existing infrastructure.

Where appropriate we have distinguished between (i) the Social Marginal Cost (SMC), which is the short run marginal cost in the absence of intervention by the infrastructure owner or service supplier, and (ii) the SRMC, which includes such intervention. The SMC is particularly relevant in the case of congestion, while it is also a useful concept for other modes and circumstances as it enables the "with" and "without" intervention costs to be compared.

LRMC is defined as the change in the total social costs resulting from a unit increase in use, allowing for capacity and infrastructure provision being optimally adjusted in the long run to match the changes in level of use. LRMC is seen as having a primary role in long term investment decisions. It may also provide a good guide to the equilibrium value of the SRMC.

Unlike FAC/PAYGO, neither SRMC nor LRMC guarantee full recovery of actual (financial) costs or expenditures. The revenues generated may be greater than or less than the annual expenditure on network operation and maintenance. While not covered in this Study, one approach ('MC Plus') is to apply a mark-up to SRMC to achieve the stated cost recovery or revenue target: this may be achievable in situations where the customers are not highly price sensitive.¹³

3.5 Valuation of capital assets - economic performance and cost recovery

3.5.1 Asset valuation approaches

Besides financial, economic and social/environmental costs, the report discusses issues of asset valuation and the cost of capital, and how these relate to charging a capital return. A number of valuation approaches are available, as follows:

- **Depreciated Historical Cost (DHC)** is the original purchase or construction cost (including later improvements) less an allowance for depreciation based on an assumed economic life. This approach is sometimes taken in company accounts but rarely used in decision-making as the costs may have arisen long ago.
- **Depreciated Replacement Cost (DRC)** values the asset at its current replacement cost less an allowance for depreciation based on an assumed economic life: it differs from historical cost when costs have changed over time (due to inflation or other factors).

¹³ Other variants of the MC Plus approach exist (e.g., involving 'Ramsey pricing'), but are not addressed further in this report.

- **Optimised Depreciated Replacement Cost (ODRC)** values assets at the cost of replacing the functions performed by a currently optimal configuration of assets (rather than direct replacement of all the current assets in their original form). It excludes redundant or obsolete assets and is relevant where technological or economic changes shift demand for services and/or costs. This approach is frequently used by New Zealand and Australian businesses: it has been applied in the DTCC analyses of KiwiRail's principal asset values.
- **Opportunity Cost** is the value of an asset in its most productive alternative use and is a measure of the cost to the economy (or a company) of continuing to use the asset for its current purpose. Only recoverable assets that can be salvaged or used elsewhere have an opportunity cost, and value in alternative use is net of the cost of converting it from the asset's current use. Opportunity cost is a valuation principle implicit in all the replacement cost approaches, as it is used to value the resource inputs in defining replacement cost.
- **Deprival Value** is the loss that the current asset user would suffer if the asset were no longer available: it combines elements of the concept of replacement cost and of the value of revenue streams generated by the asset.

Although opportunity cost is an economic concept for valuing assets, the return on this basis may provide insufficient incentive for new investment to cover upgrade or expansion. Some return in excess of opportunity cost may be warranted, as provided by optimised depreciated replacement cost. In practice, however, this is often difficult to estimate.

These valuation approaches are indicative only and need to be treated with caution. The report has examined separate DRC components for:

- Depreciating recoverable assets, such as rail track.
- Non-depreciating recoverable assets, principally land which is commonly valued on the basis of the values of land adjacent to the road or railway.
- Non-recoverable ('sunk') assets, including some formation, tunnels and bridges (both road and rail): these may have little (if any) value in alternative uses after allowing for recovery and re-purposing costs.

In the case of the road network, the asset calculations include non-depreciating assets, i.e., only land and non-recoverable assets. With regard to land, this is commonly valued using an 'across the fence' approach, i.e., valuing the land at the same rate as any adjacent land. In many cases, particularly with the road network, this is problematic. Roads provide a valuable access function to adjacent land and, if the road were no longer usable, access would be more difficult or impossible and the value of the adjacent land would significantly reduce.

In terms of other non-recoverable assets, 'non-recoverable' may be a fair description for road formation, base-courses and surfacing: in any event, the practices adopted by Waka Kotahi and local councils are generally to maintain the existing road network in a 'steady state', such that its value does not depreciate significantly over time. But the road network also includes assets such as traffic signals and lighting that may be partly salvageable. These are difficult to value, and the road valuation may be understated as a result. Accordingly, the report has adopted the more practically tractable approach of including sunk costs in its valuation.

3.5.2 Cost of capital

The cost of capital for any investment is the rate of return that capital investors would expect to receive if they were to invest the capital elsewhere on a project with comparable risks. In other words, the cost of capital is an opportunity cost. Companies create value for their shareholders by earning a return on the invested capital that is above the cost of that capital. WACC (Weighted Average Cost of Capital) is an expression of this cost and is used to assess if intended investments are worth undertaking. WACC is expressed as a percentage, like interest. If, for example, a company works with a WACC of x%, then only (and all) investments should be made that give a return higher than this.

The Study has adopted a WACC rate of 4% (real terms), based on its appraisal of evidence on the returns in the wider transport and related sectors in New Zealand. This is consistent with the discount rate adopted by WK as its central estimate for cost: benefit analyses of transport investments proposed for public funding. This WACC rate has been adopted throughout DTCC in its valuations of capital assets¹⁴, principally in the roads and railways sectors.

Requiring full cost recovery including a return on assets employed differs from the PAYGO approach, in which the capital 'charge' is an allocation of the cost of new work in the year in which the work is undertaken. If assets are long-lived and trend growth is steady, it can be shown that PAYGO will result in the same capital charge as applying a cost of capital to the DRC.

3.6 Summary – modal comparisons

Looking across the transport modes, differences in their basic economics result in differences in their charging regimes. Starting from an essentially simple commercial model and building up in complexity, we have:

- **Coastal shipping (and domestic aviation) operators.** These are commercial services and have straight-forward commercial charging regimes. They charge their customers, and they pay their infrastructure providers. However, we note that proposals to pay subsidies have recently been announced in the case of coastal shipping¹⁵. Domestic aviation was initially included in the DTCC Study but was not assessed in detail.
- **Road freight and long-distance coach/bus services**. These are also commercial in nature. They pay for their use of infrastructure (roads) on a pay-as-you-go basis (principally through road user charges levied on diesel consumption). The setting of these charge rates is informed by an allocation formula between vehicle types that reflects financial costs in that year for road maintenance, operation and construction. Detailed exceptions to this are discussed in the Working Papers.
- **Urban public transport.** These services also pay their share for their use of infrastructure (roads and rail lines) under the current charging regimes. However, only part of their revenue is commercial (farebox), with a substantial proportion of revenue coming from regional/local and central government subsidies of various types.
- **Railway (excluding urban rail passenger services).** These cover a moderate proportion of their total costs from user revenues (largely from freight traffic). KiwiRail

¹⁴ DTCC WP C9: Taxis and Ride-hailing is the one exception to the general use in DTCC of 4% pa. (real terms) as the cost of capital. WP C9 adopts a rate of 5% on the basis that investments in this sector are generally financed through private funding sources, for which a slightly higher capital charge rate is more appropriate.

¹⁵ https://www.beehive.govt.nz/release/government-investment-boosts-coastal-shipping-aotearoa

(with government) is moving towards a *policy* under which it would be expected to recover its 'above rail' (operational) costs from users, but with government funding (subsidies) to largely cover the fixed costs of its network infrastructure (as valued on an ODRC basis).

Chapter 4 Road System Appraisal

4.1 Introduction

The roads sector and its associated infrastructure (which includes provision for active modes and road-based public transport systems) represents the core of the New Zealand transport system: it supports the great majority of movements of people and a very high proportion of the movements of freight within NZ, especially high value and time sensitive deliveries.

This chapter comprises the following main sub-sections:

- The scale and usage of the road network (4.2)
- Total direct costs incurred by road users (4.3)
- Road vehicle ownership and use charges (4.4)
- Other (social and environmental) costs of road use (4.5)
- Valuation of the NZ road network (4.6)
- Public expenditure on the road system (4.7)
- Assessment of the economic value of the road system (including a return on assets) (4.8)
- Balancing road user payments with road system expenditures (4.9)
- Overview of road network performance, costing and charging issues (4.10)
- Allocation of road infrastructure economic costs by vehicle category (4.11)
- Car parking economic costs (4.12)
- Road accident costs and charges (4.13)
- Impacts of traffic volumes on road wear marginal cost analyses (4.14)
- impacts of traffic volumes on congestion marginal cost analyses (4.15).

The estimates of costs set out in Sections 4.1 - 4.11 are derived from a number of sources which do not always provide fully consistent data. The exact numbers may therefore vary to some extent between different tables, reflecting the use of these different datasets: in this regard, some of the numbers should be regarded as approximate rather than precise.

4.2 Key road network and road usage statistics

4.2.1 Key road network statistics

The New Zealand road network controlled by Waka Kotahi and the local authorities extends to about 97,000 kms in 2018/19. Of this total, about 11,000 kms were operated as State Highways by Waka Kotahi and the balance of 86,000 kms were local roads managed by the various territorial local authorities. Some 64,200 kms were sealed with about 32,400 (33%) unsealed. While Canterbury has the longest road network overall, in part reflecting its size, Waikato has the greatest length of State Highways, reflecting the complexity of longer-distance routes in the region.

In general, our appraisal in this chapter treats State Highways and local roads as parts of the single NZ road network, without differentiating between them.

4.2.2 Usage of the road network

In 2018/19 the total number of registered vehicles in New Zealand was about 4.2 million. The breakdown of this number by vehicle type and the estimated distance travelled in the year is set out in Table 4.1.

Vehiele ture	No of v	ehicles	Distance travelled (bn kms)		
Vehicle type	Total (000s)	Total (000s) Per cent		Per cent	
Motorcycles	176.7	4.2%	0.4	0.8%	
Cars	3,298.5	77.5%	35.7	73.5%	
LCVs (persons and freight)	621.1	14.6%	9.1	18.7%	
MCVs	89.6	2.1%	1.1	2.3%	
HCVs	59.2	1.4%	2.0	4.0%	
Buses	11.4	0.3%	0.3	0.7%	
Total	4,256.5	100.0%	48.6	100.0%	

Table 4.1: Vehicle numbers and distance travelled by vehicle type 2018/19

In terms of person travel (i.e., excluding goods vehicle drivers), roads were used for about 62 bn person kms. Of these, cars accounted for 55.7 bn (91%), motorcycles for 0.4 bn (1%), buses for 3.1 bn (5%) and other vehicles for 2.3 bn person-kms (4%).

The total freight task (including goods carried in light goods vehicles) is estimated to amount to about 32 bn tonne-kms annually. The breakdown of this by goods vehicle type is set out in Table 4.2.

Vahiala tura	Billion tonne-kms			
Vehicle type	Total	Per cent		
LCVs	3.5	11%		
MCV	3.2	10%		
HCVs	24.0	78%		
Total all	30.6	100%		

Table 4.2: Estimated breakdown of the total road freight task by goods vehicle type 2018/19

In total HCVs, which make up about 8% of the commercial vehicle fleet, carry about threequarters of the road freight task. LCVs, although individually having a limited carrying capacity, are very numerous and together contribute about 15% of the total tonne km.

The usage of the road network by road type (SH, LR) and vehicle type (light, heavy) is set out in Table 4.3.

		Urban			Rural		Т	otal all road	ds
Road type	Light	Heavy	Total Urban	Light	Heavy	Total Rural	Light	Heavy	All vehs
Local Roads	12.7	0.4	13.1	11.2	0.7	11.9	23.9	1.1	25.0
State H'ways	8.5	0.6	9.1	13.0	1.8	14.8	21.5	2.4	23.9
Total	21.2	1.0	22.2	24.2	2.4	26.7	45.4	3.4	48.9 ⁽¹⁾

Table 4.3: Estimated breakdown of traffic by road and vehicle type 2018/19 (billion vehicle km)

Notes (1) Because of the approach used to calculate these figures, this total differs slightly from the total in Table 4.1.

Source: WP C4, Appendix D

The key findings from this table include:

- The State Highway network accounts for just under 50% of the total vehicle kms, but for only about 11% of the length of the total road network.
- The State Highways also carry a high proportion, about 70%, of heavy vehicle movements.
- Urban roads account for about 47% of light vehicle travel but only 29% of heavy vehicle travel.

4.3 Road users - direct costs

4.3.1 Introduction

Based on a variety of datasets, estimates have been made of the direct total operating costs associated with the use of the road network for a range of different vehicle types. These include:

- Motorcycles
- Cars
- Light, medium and heavy commercial vehicles
- Buses.

In addition to the direct financial costs of vehicle operation, allowance has been made for the value of time spent travelling. This includes both time spent during the course of work on employers' business (based broadly on wage rates) and also time spent travelling for other purposes (including commuting). For freight vehicles, the costs are derived from the material supplied by National Road Carriers which allows differentiation by freight vehicle type. For passenger vehicles the values are derived from those set out in the MBCM, appropriately updated to 2018/19 values. These values are set out in Table 4.4.

Table 4.4: Values of time for person travel 2018/19 (\$/hr)

Travel purpose	Value of time (\$/hr)
Employers' business	\$36.25
Other trip purposes:	
Commuting	\$11.86
Other	\$10.48
Combined value for trip purposes not on employers' business	\$10.64

The total costs have been divided into duty components (e.g. fuel taxes) and other (resource) components. These latter represent the economic costs of travel, by vehicle type.

4.3.2 Total road user direct costs

On the basis of the distances travelled and the total numbers of vehicles in each group, the total annual costs of users of the road network for 2018/19 have been determined and these are set out in Table 4.5.

Table 4.5: Estimated aggregate total annual costs by vehicle type (incl. time costs), 2018/19 (\$bn)

Cost type	Total	Person travel	Freight travel
Resource vehicle operating costs	42.7	20.5	22.1
Time costs in working time	35.3	17.6	17.7
Other time costs	13.5	13.5	0.0
Total resource costs	91.5	51.7	39.8
User charges (Duty) (1)	5.0	3.3	1.8
Total	96.5	54.9	41.6

Notes (1) This excludes the costs of fines

This gives an estimated total cost incurred directly by users of the road system of about \$97 bn in 2018/19. The economic costs, ignoring the duty, amounted to about \$92 bn.

The key messages from this include:

- Person travel, with resource costs of \$51.7 bn, accounts for about 55% of the total user expenditure on the roading system. The costs incurred by freight vehicles are smaller at about \$40 billion or 43% of the total. The resource costs for pedestrians and cyclists are estimated to account for about 1% of the total.
- Of the costs incurred directly by road users, the value of the time spent travelling accounts for 60% of the total resource costs for personal travel but a smaller share of about 44% for freight travel.
- The duties and levies paid by road users represent a much smaller share of the total costs, amounting to about 5% of the total (\$5 bn). This share is slightly lower than average for goods vehicles (4%), than for vehicles used for personal travel (about 6%).

4.4 Road vehicle ownership and use charges

4.4.1 Introduction

As has been indicated above, road users are required to contribute to the costs of maintaining and operating the road transport network. They also contribute through the National Land Transport Fund to the costs of public transport provision in New Zealand. Users are faced with a range of duties, charges and levies: the most important of which contribute to the costs of providing and maintaining the road network are:

- Fuel excise duty
- Road user charges
- Vehicle licensing and registration fees
- Regional fuel taxes (Auckland only)
- Vehicle certification and safety inspections
- Driver licensing and testing

In addition to these users are also required to pay:

- levies to ACC on petrol and on motorcycles and other motor vehicles and ownership to cover the costs of road accidents that are met by ACC;
- an Emissions Trading Scheme (ETS) levy which is used to purchase the carbon credits associated with the consumption of automotive fuels;
- a range of other small levies associated with petroleum use.

4.4.2 Fuel duties and levies

Revenue for the National Land Transport Fund is raised from fuel duties in the case of petrol vehicles under 3.5 tonnes and from road user charges in the case of diesel vehicles and all heavy vehicles

The average levies on fuel are set out in Table 4.6 below. These include levies raising revenue for Waka Kotahi via the NLTF and levies raising revenues for other agencies.

Table 4.6: Average fuel duties and levies 2018/19 (c/litre)

Fuel	Total levy c/litre
Petrol (fuel excise duty)	62.15
Petrol (ETS, etc.)	12.14
Petrol and diesel - Auckland Regional Fuel Tax	10.00 (Applies to all fuel sales within the Auckland region)
Diesel (ETS, other)	10.08

These can be compared with the average retail prices of fuel (excluding GST) in 2018/19 of 184.5 cents per litre for petrol and 130.5 cents per litre for diesel. These fuel duties therefore represent 42% of the costs of petrol and 8% of the costs of diesel.

Revenues from vehicles using diesel are generated from road user charges which are levied on all vehicles using diesel fuel. While these vary by detailed vehicle class, the average rates by vehicle category are set out in Table 4.7. The RUC rate for passenger cars/vans of 7c/km is

slightly higher than the petrol excise of (6.5c/km in 2018/19), which is set assuming an average fuel consumption of 9.5 litres/100 km.

Table 4.7: Average RUC rates by vehicle class (\$/km)

Vehicle category	Average RUC rate
Passenger car/van	0.07
Light commercial vehicle	0.07
Medium commercial vehicle	0.10
Heavy vehicle	0.38
Heavy vehicle trailer	0.17

These two sets of levies, fuel duties and RUC, provide the major sources of revenues for the road system. These are supplemented by a range of other sources including revenues from vehicle licensing fees, which go directly to the NLTF and onwards to Waka Kotahi, and payments to ACC.

Road user revenues from traffic etc fines are also fairly substantial, at about \$190m in 2018/19. However, this revenue goes into the general government revenues, not into the NLTF.

4.4.3 Total payments

The estimated total allocation of user payments by payment category and vehicle type in 2018/19 is set out in Table 4.8. While there is an overlap between the different types of activities, vehicles have been divided into those used primarily for person transport, which in this case is defined to include motorcycles, cars, the lighter LCVs (LCV1) and buses, and those used for the movement of freight which comprise the remainder.

Of the total payments to Waka Kotahi/NLTP, about 63% is derived from lighter vehicles mainly used for person travel and just over a third from vehicles mainly used for freight. Payments to other agencies have a much higher proportion for lighter vehicles reflecting the high shares for ACC levies, which are focussed on light vehicles, and for the allocation of fine revenues.

The allocated split by users of different road types gives broadly similar shares of payments for State Highways and local roads, both for payments to Waka Kotahi/NLTP and to other agencies. For the Waka Kotahi/NLTP payments, this reflects a combination of a high share of road user charges allocated to State Highways, reflecting their relatively high use by heavy vehicles, and the allocation of toll revenues all of which are in respect of State Highways: these are partly offset by a lower share of payments from fuel duty, reflecting the higher volumes of light traffic on local roads¹⁶. Payments to other agencies by road type broadly reflect the higher total distances travelled on local roads.

¹⁶ The details of these flows are set out above in Table 4.3.

					,		
	Vehicle used for			Road type			
Payment/ Levy	Person transport	Freight transport	Total	SH	Local roads	Total	
Payments to Waka Kotahi/NLTP:							
Veh licensing & registration	174	52	226	110	116	226	
Fuel duty	1,962	0	1,962	928	1,034	1,962	
RUC	251	1,416	1,667	1,005	662	1,667	
Tolls	24	14	39	39	0	39	
Other	92	15	108	52	56	108	
Total Waka Kotahi/ NLTP	2,503	1,498	4,001	2,115	1,886	4,001	
Per cent of total	63%	37%	100%	53%	47%	100%	
Payments to other agencies:					·		
ACC - licence levy	186	49	235	117	118	235	
ACC - fuel levy	190	0	190	90	100	190	
ETS	240	160	400	208	191	400	
RFT	86	58	144	54	89	144	
PEFM	18	8	26	13	13	26	
LAPT	30	9	39	20	19	39	
Maritime search and rescue	13	0	13	6	7	13	
Fines	176	16	191	92	100	191	
Total other agencies	938	299	1,237	600	637	1,237	
Per cent of total	76%	24%	100%	49%	51%	100%	
Total all payments	3,441	1,797	5,238	2,715	2,523	5,238	

Table 4.8: Total payments from users allocated by vehicle type and road type 2018/19 (\$m)⁽¹⁾

(1) This table shows the total payment by road users whether or not it is spent on roads.

The revenues received by Waka Kotahi from FED and RUC payments amount to about \$3.7 bn, with the balance of user revenues mainly coming from vehicle licensing and registration charges.

4.5 Other road user costs

The total costs associated with road system usage also include costs for car parking and a range of socio-economic/environmental costs, principally the following:

- Crash (accident) costs
- Greenhouse gas costs
- Air quality costs
- Noise costs
- Ecology costs

These cost figures are set out in Table 4.9 and summarised in Figure 4-1.

From Table 4.9 the vehicle operating and user time economic costs (i.e. excluding duties incurred directly by users) amounted to about \$92 bn in 2018/19, with the economic costs of parking provision (mostly not paid directly by those using the parking spaces) contributing a further \$15 bn¹⁷. The indirect costs of crashes and environmental impacts account for an additional \$9bn. In aggregate the total annual economic costs associated with/resulting from road system use are some \$115 bn (excluding the costs of the road network provision and maintenance).

In terms of the breakdown of the total, direct user costs would account for about 79% of the total, accident and environmental costs about 8% and parking provision about 13%.

Table 4.9: Direct economic and social costs incurred or generated by road users excluding network provision 2018/19 (\$bn)

Costs incurred directly by users (excluding duties and levies)	Total	Motorised person transport	Freight transport
Total economic resource costs incurred directly by users	91.5	51.7	39.8
Other social costs imposed by road users			
Crash and accident costs	5.4	5.0	0.4
GHG costs	1.5	0.9	0.5
Air quality	1.1	0.6	0.5
Noise	0.9	0.7	0.2
Ecology	0.1	0.1	0.0
Sub-Total	9.1	7.4	1.7
Total resource costs from use of the road n	etwork		
Resource economic costs	100.5	59.0	41.5
Parking provision			
Total costs of parking provision	14.7	14.7	n.a.
Total system costs including parking			
Total system resource costs	115.2	73.7	41.5

¹⁷ Parking costs are analysed in more detail in Section 5.12.

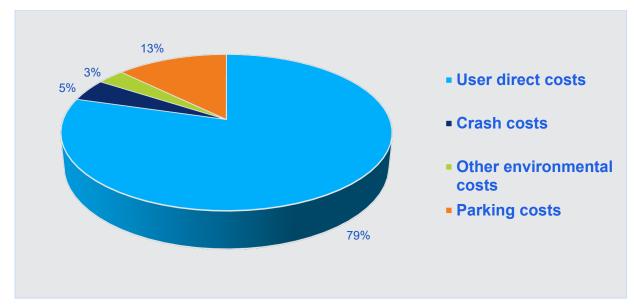


Figure 4-1: Road system economic cost proportions by type

4.6 Valuation of the road network

4.6.1 Introduction

The value of the road network is an important element in developing the total costs of providing and maintaining the road system. There are two ways to assess, whether this value is measured in financial or economic terms. This section outlines the basis of valuation for the New Zealand road network and the values that result.

In 2018/19 the value of the NZ road network was estimated at some \$111 bn, an average of about \$22,000 per head (NZ population). Approximately \$61.5 bn of this total relates to local roads and \$50 bn to State Highways.

4.6.2 Basis of valuation

For the valuation of the road networks, the road infrastructure and the land that it occupies are valued separately.

Waka Kotahi and the local authorities all use a broadly similar approach to valuing the non-land roading infrastructure. This is based on the replacement costs of the various components with an allowance for the depreciation of these over time as and where appropriate.

However, for the valuation of land, an important component of the total, a variety of different approaches is used. In all cases, it is assumed that land does not depreciate in value over time (unlike most of the other components making up the total valuation). Waka Kotahi takes an "over the fence" approach, which values the land used by highways on the basis of the land values (prices) for the areas adjacent to the road. This results in land costs accounting for about 28% of the total depreciated value of the State Highway network. These estimated values are updated regularly.

For the local authorities the approaches used to value the land assets vary and the outcomes are not always published. The lack of a consistent approach to the valuation of land means that the figures for this should be regarded as indicative rather than precise. The land values are estimated at about 31% of the total value of the local road network, reflecting the high share in urban areas, where land costs are typically high. Because of the use of historic costs in some of

the valuations, it appears likely that the land values for local roads may be significantly understated in relation to the approach used by Waka Kotahi. While there are significant issues with the valuation of the land on which the road network is constructed, the application of the approach used by Waka Kotahi to the local road network would result in a higher overall valuation.

4.6.3 Summary of road network valuations by roading authority

The aggregate values of the road network for the State Highways and local roads are set out in Table 4.10. The total depreciated value of just over \$111 billion is split about 45% for SH and 55% for local roads. The land values, which amount to just over 30% of the total values of the road network, are the only asset category which is classified as recoverable.

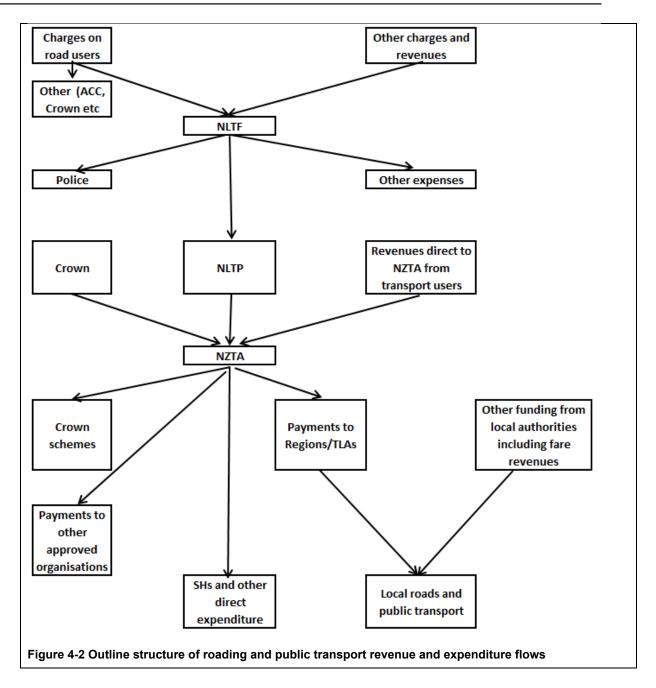
	Depreciated Replacement Cost				
Item	Total \$bn	Per Route Km \$m			
Road category:					
State Highways	49.7	4.50			
Local Roads	61.5	0.72			
Sub total	111.2				
Analysis by asset category:					
Recoverable, non-depreciating (land)	33.4				
Non-recoverable (all other asset types)	77.8				

Table 4.10: Summary valuation estimates for the New Zealand road network 2018/19

Notes (1) This assumes a similar relationship between replacement costs and depreciated replacement costs for the local road network as was determined for the State Highway network.

The average value per road km for State Highways is very much higher than that for local roads. This reflects in part the higher capacity and construction standards of much of the State Highway network and in part the different assumptions about the value of land.

4.7 Public expenditure on the road system


4.7.1 Basis of the funding and charging system

The major principle underlying the existing (2018/19) charging and funding approach is that all expenditure in a year (both capital and operating expenditures) should be financed from funds generated in that year (PAYGO). There are some exceptions to this, particularly in the financing of public-private partnership (PPP) projects such as Transmission Gully and other tolled projects, the revenues from which are used to offset their capital costs over time.

4.7.2 Overall structure of revenues and expenditures

The total public expenditure on the road system in New Zealand in 2018/19 amounted to about \$4.8 bn.

The broad structure of the total charges to road users and others for the use of the road network together with the agencies responsible for the spending of the revenues collected is set out in Figure 4-2

The bulk of the funding for the road system is derived directly from users. In addition, local authorities make contributions from their own resources (largely raised through local rates) to support local schemes. The Crown (central government) also made a direct contribution in respect of a range of defined schemes in 2018/19, the Kaikōura earthquake response being the largest of these at that time. Some of the funding from road users goes to support the public transport activities of the regions, supplementing revenues from users and other local authority funding.

4.7.3 Annual expenditure on the road system

The expenditure on the road system is primarily funded from a variety of charges paid by road users which are channelled through the National Land Transport Fund to Waka Kotahi. These funds are either spent directly by Waka Kotahi on the State Highway network or are passed on to other agencies, mainly for the local road network and to support public transport. The

revenues from users are supplemented by grants from the Crown for specific schemes (particularly in recent years repairing the damage from the Kaikōura earthquake) and by funding from local authorities¹⁸ for both roads and public transport.

The total cost of providing and managing the road system on a PAYGO basis in 2018/19 is estimated at \$4.76 bn. The sources of funding for this expenditure are set out in Table 4.11.

Source of revenues	Total	Per cent of total	Notes
Waka Kotahi (direct revenues from road users)	3,709	78%	Includes contributions to expenditures on policing and road user contribution to local authority roads and excludes contributions to expenditures on public transport
LAs own resources	849	18%	Estimated. As well as rates, this includes revenues from road users from for example parking, LAPT, RFT etc but this is not ring fenced
Crown	198	4%	Payments for identified projects
Total	4,757	100%	

Table 4.11: Sources of expenditure on the roads sector 2018/19 (\$m)

About three-quarters of the funding supporting the expenditure on managing and developing the roading network comes from Waka Kotahi, using the revenues mainly collected from road users through fuel excise duty, road user charges and vehicle licence fees. A further 20% comes from local authorities. The Crown also directly provides a small part of the total, much of which in 2018/19 related to the payments for the Kaikōura earthquake response and so would vary from year to year.

Of the revenues collected by Waka Kotahi and used to fund the roading system, the subsidy to local authorities is estimated at \$1,398m in 2018/19. The balance remaining with Waka Kotahi is divided between expenditure on the State Highway system, subsidies for other agencies, and general staff and operating expenses.

4.7.4 Breakdown of roading expenditure by type

Estimates of the expenditure on the road network by type funded by Waka Kotahi or the local authorities have in part been derived from CAM data discussed below and in part from other sources. The estimated breakdown of expenditure by type is set out in Table 14 and Figure 3.

¹⁸ Waka Kotahi provides money from the National Land Transport Fund (ie collected from road users) to local authorities for "Approved Projects", for which the local authorities typically have to provide a portion of the expenditure. However local authorities may also spend on projects which are not approved by Waka Kotahi and for which they therefore have to meet the full costs. Information on the expenditure by the local authorities is only available from their 63 Annual Reports and not with a consistent breakdown. Estimates have been made of this expenditure based on a sample of the authorities.

	Road type							
Expenditure type	State Highways		Local roads		Total			
	\$m	Per cent	\$m	Per cent	\$m	Per cent		
Expenditures based on CAM analysis								
Maintenance and operations	416	16%	745	37%	1,160	25%		
Renewals	295	11%	638	32%	933	20%		
Total operations & maintenance	711	27%	1,383	70%	2,093	45%		
New and improved roads	1,384	52%	424	21%	1,808	39%		
Total based on CAM analysis	2,095	78%	1,807	91%	3,901	84%		
Other expenditure		·	·		·			
Policing (1)	173	6%	182	9%	355	8%		
Crown schemes (2)	199	7%			199	4%		
Waka Kotahi overheads (2)	204	8%			204	4%		
Total expenditure	2,671	100%	1,989	100%	4,659 (3)	100%		

Table 4.12: Estimated breakdown of roading expenditure by road type 2018/19, PAYGO approach

Notes (1) Police costs have been allocated in proportion to the total veh-kms by road type.

(2) Crown schemes and Waka Kotahi overheads have been allocated to State Highways.

(3) Because of the method of calculation this figure is slightly different to the total in Table 4.8.

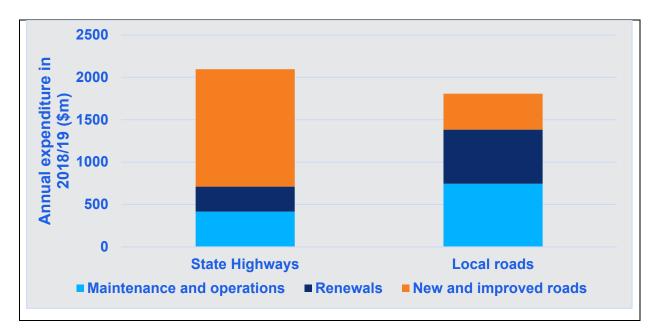


Figure 4-3: Breakdown of operating and capital expenditure by road type 2018/19 (\$m) – elements included in CAM analysis only (PAYGO approach)

Although the total estimated direct expenditures on the State Highway and local road networks as derived from the CAM analysis are broadly similar in aggregate terms, there is a very different split for the two road classes between expenditure on operations and maintenance on

the one hand, and capital costs on the other hand. Local roads have a much higher proportion (and absolute level) of expenditure in operating and maintaining the asset in terms of both maintenance and renewals, whereas for State Highways there is a much greater focus on expenditure relating to the provision of new roads. For State Highways this amounts to about 61% of the total (\$1,384m) but for the local road network, this only amounts to about 21% of expenditure (\$424m).

4.8 Alternative approaches to the assessment of the costs of the road system

An alternative approach to assessing the costs of the road network is to replace the levels of capital expenditure incurred on an annual basis in 2018/19 (which forms the basis of the current PAYGO system) with a target rate of return on the valuation of the road network as set out above. Work as part of this Study has identified that an appropriate annual rate of return on assets for this purpose would be 4% (in real terms).

The level of capital expenditure which is financed by road users, by the local authorities or by the Crown from general tax revenues on the current PAYGO basis, as set out above in Table 4.12, amounts to about \$1.8bn.

This can be compared with charges that would be required to obtain the desired rate of return (4%) on the capital assets embodied in the roading network. Applying this to the total valuation of the road system of \$111 bn as shown in Table 4.10 would give \$4.4 bn as the desired return on the capital invested in the road system. The total costs of the road system on this basis are set out in Table 4.13.

		Road type						
Expenditure type	State Highways		Local roads		Total			
	\$m	Per cent	\$m	Per cent	\$m	Per cent		
Expenditures based on CAM an	Expenditures based on CAM analysis:							
Maintenance and operations	416	13%	745	19%	1,160	16%		
Renewals	295	9%	638	16%	933	13%		
Total operations & mtce	711	22%	1,383	34%	2,094	29%		
New and improved roads	1,988	61%	2,460	61%	4,448	61%		
Total based on CAM analysis	2,699	82%	3,843	95%	6,542	90%		
Other expenditure:	·			·				
Policing (1)	173	5%	182	5%	355	5%		
Crown schemes (2)	199	6%			199	3%		
WK Overheads (2)	204	6%			204	3%		
Grand total opns & mtce	3,275	100%	4,025	100%	7,300	100%		

Table 4.13: Estimated breakdown	of roading costs by r	oad type 2018/19 Ca	nital return approach
Table 4.13. Louinaleu bieakuuwii	or roading costs by r	0au type 2010/13, 0a	pilai relui il appi vacii

Notes (1) Police costs have been allocated in proportion to the total veh-kms by road type.

(2) Crown schemes and Waka Kotahi overheads have been allocated to State Highways.

The application of the proposed rate of return would increase the costs of the road network substantially. The capital-related new and improved costs would more than double from \$1.8 bn to \$4.4 bn, and the total costs would increase from \$4.7 bn to \$7.3 bn, an increase of some 55%. This would particularly impact on the local road network, the total costs of which would increase from a PAYGO figure of \$2.0 bn to \$4.0 bn, an increase of 100%. If the value of the land embodied in the local road network was valued using the approach taken by Waka Kotahi, the costs based on a rate of return approach would increase further.

4.9 Balancing user contributions with the costs of the road network

The costs of providing and operating the road network set out in Table 4.12 and Table 4.13 can be compared with the funding that is available in part from road users through a range of duties and levies and in part from contributions from the Crown and from local authorities as set out in Table 4.14.

The surplus from the PAYGO approach is currently used in part to support the provision of public transport services by the regional councils.

Table 4.14: Costs and revenues associated with the national road network 2018/19 by broad user type (\$m) – PAYGO and economic return on capital approaches

		Allocation to:	
	Total	Passenger vehicles	Freight vehicles
Sources of funding			
Road users	4,001	2,503	1,498
Local authorities' contribution	849	553	296
Crown funding	199	130	69
Total sources of funding	5,049	3,185	1,863
Total costs – PAYGO approach		·	
Total costs (note 1)	4,659	3,054	1,605
Surplus/(Deficit)	389	131	258
Total costs - Economic return on capital approach			
Total costs (note 1)	7,300	4,870	2,429
Surplus/(Deficit)	(2,251)	(1,685)	(566)

Notes: (1) Total costs cover provision and operation of the road system including Crown schemes and WK Overheads.

(2) The cost breakdown is based on the split by vehicle type estimated using the CAM approach and relates to the particular costs which these vehicle types impose on the road network.

(3) The sources of funding relate to the contributions which different classes of road users make to the total revenues.

(4) Road user costs include toll revenues but exclude fines.

On this basis, unlike the PAYGO approach, the charges on road users and other sources of revenues would fall short of the full economic costs of the provision and operation of the road system. Meeting these higher costs would in principle require a higher level of taxation on road

users. The current allocation of costs to classes of road users and the possible ways in which this would need to change if the costs to be met were increased to incorporate the rate of return approach are discussed in the following section.

4.10 Overview of road network performance and costing issues

Key features of the performance of the road network, the costs associated with its use and the revenues generated from users are set out in Table 4.15.

Key features from this summary table include:

Overall picture

- The resource economic costs (including travel time costs, rows 3-7) incurred directly by road users for the transport of freight or persons are very substantial, amounting to over \$90 bn per year (an average of some \$18,000 per head of NZ population). Of this almost \$40 bn is in respect of the movement of freight and just over \$50 bn in respect of the movement of persons.
- In addition to this, the transport of goods or people also imposes substantial externality costs (rows 9-11). Excluding parking these are estimated to amount to almost \$9 billion per year, about 10% of the direct user costs. Parking costs would add a further \$15 bn. These externality costs are generated mainly by the movement of persons with the share attributed to freight amounting to somewhat less than 20%. To some extent for crash and greenhouse gases, the costs are offset by taxes and other charges on road users.
- To support movement by road for people and freight, the costs of the provision and management of the road network by Waka Kotahi and the local authorities are estimated at between about \$5-\$7 bn, depending on the approach used to estimate the costs¹⁹. The costs attributed to freight vehicles would amount to about a third of both these totals.
- The costs of network provision are fairly modest in relation to the total users cost (rows 6-7) of about \$90 bn.
- Offsetting these costs, road users contribute about \$4 bn to the NLTF with further contributions directly from the Crown and from local authorities: these amounted to about \$1 bn in 2018/19. Payments by users thus cover between 58% and 95% of the costs of the road network (rows 20 and 20a). Revenue from road users plus contributions from the Crown and local authorities together exceed the costs of the road network in the PAYGO case. The surplus that results is used to provide funding for public transport.
- On the other hand, based on the economic return on capital approach, the revenue shortfall from freight vehicles compared with user economic costs (rows 6-7) would amount to 2.1%. For passenger vehicles the shortfall would amount to about 3.9%.

¹⁹ The lower cost is based on the current PAYGO approach and the higher cost assumes an economic return on capital (i.e. the value of the road infrastructure).

				Road	Road	freight	Total	
				person (Car, LV)	Non HCV2 trucks		road transport	
1	Transport task	(pkm or ntk)	mill	58,405	10,600	20,300		
			l l	Economic retu	urn on capit	al approach		
2		Infrastructure and services:						
3	1	Public sector costs – infrastructure & services (note 1)	\$mill pa	4,538	1,406	917	6,861	
4		Parking	\$mill pa	14,656			14,656	
5		User economic costs:						
6		Vehicles & operations	\$mill pa	20,536	18,332	3,787	42,655	
7	Economic costs	User time	\$mill pa	31,116	15,368	2,290	48,774	
8		Social/environmental costs:						
9		Accidents	\$mill pa	4,979	337	53	5,369	
10		Health	\$mill pa	-	-	-		
11		Environmental (GHG, air qual, noise, biodiversity)	\$mill pa	2,299	959	332	3,590	
12		Total economic costs (incl parking)	\$mill pa	78,124	36,403	7,379	121,907	
13	Financial costs	User charges (excl parking & tolls) (note 2)	\$mill pa	2,503	801	697	4,001	
14	Economic costs	Econ costs per pkm or ntk (excluding parking costs)	cents	108.7	343.4	36.4	492	
15	Summary	Econ costs per pkm or ntk (including parking costs)	cents	133.8				
16		User charges (excl parking & tolls)	\$mill pa	2,503	801	697	4,00	
17		Financial surplus/(shortfall) (i.e. Public sect costs - User charges)	\$mill pa	(2,035)	(605)	(220)	(2,861	
18	Financial costs summary	User charges / pkm - excl W&C	cents	4.3	7.6	3.4		
19	j	Financial surplus/(shortfall) per pkm or ntk	cents	(3.5)	(5.7)	(1.1)		
20		User charges / Public sector costs (%) – excl W&C	%	55%	57%	76%	58%	
PAY	GO approach							
3a	Infrastructure costs	Public sector costs – infrastructure & services (note 3)	\$mill pa	2,808	863	561	4,232	
17a		Financial surplus/(shortfall) (i.e. Public sect costs - User charges)	\$mill pa	(305)	(62)	135		
19a	Financial cost summary	Financial surplus/(shortfall) per pkm or ntk	cents	(0.52)	(0.59)	0.67		
20a		User charges / Public sector costs (%) – excl W&C	%	89%	93%	124%	95%	

Table 4.15: Road person and freight transport economic and financial analysis summary 2018/19

Notes:

(1) These figures are estimated from the CAM data, rather than the expenditures set out in Table 4.14 as reported by WK and others. Due to the different approaches used, there is a slight difference between the totals (\$6,861m compared to \$6,897m).

(2) Because of differences in the method of estimation including the inclusion of revenues other than those derived from FED and RUC such as tolls and vehicle licensing charges, these are slightly higher than those derived from the CAM dataset out in Table 4.18. The differences are however relatively small (\$4,001m compared to \$3,918m).

(3) Similarly these figures are based on the data in Table 4.18. The total expenditure from this \$4,232m compares with the figures in Table 4.11 adjusted to remove Crown expenditure and WK overheads to give a total of \$4,354m.

Freight aspects

- Considering the position for freight in more detail, two-thirds of the road freight task in tonne-kms is carried by the largest vehicles (HCV2s), although these account for a relatively low share of the total vehicle kms.
- The smaller freight vehicles (LCVs used for freight and MCVs) are responsible for about 85% of the direct user economic costs and three-quarters of the environmental costs of all road freight vehicles.
- The costs per ntk are substantially higher for the lightest vehicles, at almost \$3.4 per ntk compared to 36 cents per ntk for the largest vehicles.
- The heaviest vehicles (HCV2s) contribute about 45% of the user revenues from freight (\$697m). This is exceeded by their costs based on the economic return on capital basis but a surplus is generated on a PAYGO basis. The costs exceed revenues for the lighter vehicles in both cost bases.
- On the basis of the economic return on capital approach and comparing allocated costs and user charges, the shortfall for the largest freight vehicles is about \$220m, 32% of the allocated user charges, compared to just over 55% for freight vehicles as a whole, with a shortfall of \$830m.
- These shortfalls are however relatively small in relation to the direct economic costs (rows 6-7) of freight movement of \$40 bn. For the largest freight vehicles, this shortfall in direct user cost terms would amount to about 3.6% of the direct economic costs, more than twice the average figure for freight (2.1%). In both cases, however, this would still represent a fairly small share of the total direct costs.

4.11 Allocation of road infrastructure economic costs

4.11.1 Overview

To supplement the analysis of the costs associated with the provision of the road network discussed earlier in this chapter, this area of work considered in more detail the average economic costs by vehicle type that would arise for the use of the NZ road infrastructure (State Highways and local roads). This involved allocation of infrastructure costs (attributable, joint and common costs) between road user categories based on the characteristics of each vehicle type. This results in a set of fully allocated total and unit costs that will reflect the assessed contribution of each vehicle type to the costs of road infrastructure. They are nevertheless average costs in the sense that the allocated expenditure is summed by cost category and divided by the total output in that category.

4.11.2 Calculation of financial and economic fully allocated costs

The methodology adopted takes as its starting point that used in Te Manatū Waka's Cost Allocation Model (CAM) to calculate recommended rates for RUC and petrol excise. The main issue in calculating average economic costs by vehicle type is the attribution of joint and common costs. CAM includes a road cost allocation matrix that allocates total road costs between five cost 'drivers'. We used this matrix as a starting point to estimate the (fully allocated) average economic costs by vehicle type.

CAM provides a rigorous and defensible method of dividing the costs of maintaining and improving the road network between vehicle types in a fair and neutral manner based on the cost causality of each vehicle type. The basic calculation in CAM allocates the total (State Highway plus approved local roads) budgeted expenditure to the five cost drivers. However, road capital costs are included on a cash ('PAYGO' – pay as you go) basis. To calculate the average *economic* costs of the road system, we have taken the CAM analysis, stripped out the road improvement budget items and added in an economic capital charge of 4% of the value of the roading asset (as determined in Section 5.6.3). This capital charge was some \$4.45 billion (for 2018/19), which is substantially higher than the amount spent in that year on new roads and road improvements. The resultant comparison between the CAM rates and the rates based on the estimated average economic costs is given in Table 4.16.

If the economic capital charge approach were applied in practice, it would bring the funding calculation more into line with the way roads are treated in each road authority's accounts. Charges would most likely increase for all motorised road users (whether diesel or petrol-powered), and the roads budget would be expected to generate a financial surplus. A potential secondary effect of such a change is that the increased charges would result in a slight reduction in overall road traffic volumes along with a small switch to other transport modes (particularly the switching of some truck traffic to rail transport). Further analysis would be required (beyond the scope of DTCC) to quantify these likely impacts.

4.11.3 Setting road user charges

We used the allocation matrix in CAM to calculate the contribution required from each vehicle class to recover the total expenditure on roads in any one year. However, for the purpose of setting road user charges and fuel excise duties, the CAM rates are currently set to recover all Waka Kotahi expenditure (on a PAYGO basis) including roads and public transport. Additional costs are added to the base rate to pay for non-road expenditure by Waka Kotahi, while roading authorities pay approximately half the cost of Waka Kotahi-approved works on local roads. Since roads are funded on a PAYGO basis, the current charges are based on the capital expenditure on road system improvements undertaken in the year in question, rather than any concept of return on assets employed.

Cost driver	CAM rate (\$ per 000 km)	Average economic cost (\$ per 000 km)
HV (heavy vehicle km, incl. trailers)	\$1.19	\$5.08
PCE (passenger car unit km)	\$10.53	\$22.27
GVW (gross vehicle weight km)	\$1.56	\$2.00
ESA (equivalent standard axle km)	\$200.97	\$412.52
PV (powered vehicle km)	\$43.59	\$79.32

Table 4.16: Comparison between CAM rates and average economic cost rates, 2018/19

4.11.4 Charges by vehicle type

Note that while the analysis described above determines the fully allocated cost for each cost 'driver', the actual charges and the cost recovery for each vehicle type depend on the characteristics of the vehicle.

For example, assuming a light goods vehicle²⁰ is 1 PCE, 3.5 tonnes (laden weight) and 1 PV, the 'base' CAM price (2018/19) works out at 6.5 cents per kilometre (10.53+3.5*1.56+ 43.59)/1,000. However, for charging purposes, this needs to be converted into a price per litre of petrol, so that the actual cost to each motorist will depend on their vehicle's fuel consumption. For the light goods vehicle example, the economic cost would be 12c/km, i.e. almost double the CAM-based rate. The truck rate is derived as an average cost per parameter-kilometre for each of the cost drivers, but this is converted into a charge that depends on the maximum permitted load and the axle configuration. The costs by cost-driver calculated in CAM are used to make this calculation.

Vehicle type	Description and definition
Car	Two axle vehicle less than 3.5 tonnes including vehicle with trailer
LCV1	Light trucks with two single-tyred axles
LCV2	Light trucks with twin-tyred back axles
MCV	Light trucks with three axles
HCV1	Trucks with four or more axles (not part of HCV2 rigs)
Trailers	Heavy trailers not included in HCV2.
HCV2A	"H" class rigs with six, seven or eight axles
HCV2B	"H" class rigs with nine or more axles
Bus	Bus

²⁰ "One ton truck" or utility vehicle

Vehicle class	vehicle km	HV-km	PCE- km	GVW - km	EDA- km	PV-km	Financi al cost \$/1000k m	Actual charge \$/1000k m	Econo mic cost \$/1000k m
Motorcycle	0.4	0.0	0.2	0.2	0.0	0.4	53.9	33.0	91.5
Car	35.7	0.0	35.7	99.2	0.2	35.7	65.0	66.1	109.1
LCV1	2.1	0.0	2.1	6.0	0.0	2.1	65.0	65.9	109.1
LCV2	7.0	0.0	7.0	17.4	0.0	7.0	62.5	65.9	105.2
MCV	1.1	1.1	2.3	8.3	0.2	1.1	132.3	137.4	227.0
HCV1	0.6	1.2	1.2	11.4	0.6	0.6	336.9	377.2	570.5
HCV2A	0.7	1.4	1.4	19.4	0.8	0.7	393.3	395.9	656.1
HCV2B	0.6	1.3	1.3	28.0	0.8	0.6	461.0	316.1	747.9
Bus 2axle	0.3	0.2	0.6	2.1	0.1	0.3	132.0	201.3	224.9
Bus 3axle	0.1	0.1	0.2	1.5	0.1	0.1	296.0	402.5	498.8

Table 4.18 Estimated RUC and average economic cost (km in billion)

Source Waka Kotahi, consultant estimates.

For definition of vehicle classes see Table 4.20.

Table 4.18 applies the rates shown in Table 4.16 to the estimated travel output for nine vehicle classes defined in Table 4.17. This confirms that the 'base' (2018/19) RUC rates are set marginally higher than the CAM recommendations for heavy vehicles (except for HCV2B), but substantially less than our estimates of the economic costs.

4.12 Car parking

4.12.1 Estimation of NZ parking supply

Based on international data on the numbers of parking spaces provided in major international cities/regions (principally USA, UK and Singapore), the Study developed a model for the total number of parking spaces provided on a regional basis (low, medium and high scenarios) related to the number of vehicles owned and the average population density in the region. The resulting model estimates of parking spaces per car, when applied to New Zealand, ranged from 4.1 spaces in urban Auckland up to 4.8 spaces in the rural parts of several regions: on-street parking spaces were estimated to account for some one-third of the total spaces, off-street for two-thirds.

Based on these model estimates, our cost analysis work assumed an average of 4.4 spaces per registered vehicle in NZ, i.e. a total of 17.2 million spaces. In broad terms, around 40% of these are on-street or within residential property boundaries; and the remaining 60% are either off-street on privately-owned land (usually made available for parking for employees or visitors) or are off-street parking spaces operated on a commercial basis.

4.12.2 Unit costs for parking spaces

Based on multiple NZ data sources, a unit cost model was developed to estimate typical costs of providing and operating parking spaces in NZ, with three cost categories: capital costs; land costs; operations and maintenance costs. The model results are summarised in Table 4.19.

	Construct	tion costs	Land costs	O&M costs	
Parking type	Total \$	\$pa (2)	\$pa (1)	\$pa	
Off-street – surface	2,444	147	**	246	
Off-street – structure	23,716	1,423	**	1,464	
On-street	1,178	71	**	123	

(1) Land costs vary very substantially between situations, especially between urban and rural areas: the typical cost range is from around \$2,000 pa/space in the Auckland urban area down to minimal amounts in some of the more rural regions.

(2) The annualised cost figures for construction and land are calculated as 4% (real terms) of the capital values in each case.

4.12.3 Total and average economic costs of NZ car parking supply

Based on the parking supply estimates and the unit costs given above, our central estimate is that the total (economic) cost of parking space provision and operation in NZ is some **\$14.66 billion pa**.

Based on the number of light vehicles registered in NZ, this equates to an average of some \$3,700 pa per light vehicle, or alternatively \$3.90 per light vehicle trip, for 2018/19.

4.12.4 Marginal costs of parking supply

The Study has not undertaken any specific analyses on this topic. However, we provide the following comments:

- For off-street parking, the average and marginal costs of parking are likely to converge in the longer term, given the relative scalability of off-street parking. Therefore, average costs are likely to provide a reasonable approximation to long-run marginal costs in most situations.
- This conclusion may not apply to on-street parking, especially in locations where supply is constrained and the opportunity cost of space within the road corridor is high.

4.12.5 Who pays for the costs of parking?

The Study analyses of HTS data indicate the following results (averaged over all regions):

- 86% of all trips use off-street parking at their destination,
- 99% of trips do not involve payment of any parking charges, and
- where parking charges are incurred, they are paid by people in the vehicle in 85% of cases.

The HTS findings together with a broad 'back of envelope' assessment leads us to the conclusion that direct user charges for parking spaces in NZ yield annual revenues in the order of \$200 -\$400 million pa. This level of revenues would cover between 1.5% and 3.0% of the \$14.66 billion total annual parking economic costs NZ-wide.

These results suggest that parking costs are not usually charged directly to drivers, which in turn implies that these costs are:

- (1) bundled in the costs of goods and services; and/or
- (2) paid for indirectly by drivers in other ways (e.g., through local rates); and/or
- (3) subsidised by wider society.

For example, we expect that the costs of parking at destinations are often subsidised, whereas the costs of parking at people's homes are likely to be bundled (e.g., into housing costs, for those who park off-street) or partly subsidised (e.g., through rates, for those who park onstreet). Data limitations have precluded further investigation of this aspect within the Study²¹.

While limited data exists on this topic (both nationally and internationally), we have made a broad estimate of the split of the total economic cost figure for parking (\$14.66 bn per year, as above) between parking user contributions (in part through direct parking charges, in part by costs being 'bundled' as part of the costs of goods and services, and in part by indirect payments, e.g.as a component of local rates). While our assessment is subject to considerable uncertainty, our best estimate is that users of car parking spaces bear some 55% of the total economic costs (i.e. around \$8.0 billion pa with the other 45% (c\$6.6 bn pa) comprising an economic subsidy from society at large.

4.13 Road accidents – economic costs and charges

4.13.1 Background/overview

This section summarises the methodology and analyses undertaken to derive estimates of the Total (Social) Costs, Average Costs, Marginal Costs and Marginal Externality Costs of road transport-related accidents²² in New Zealand. As well as aggregate cost calculations, the analyses consider the various inter-relationships between the funding and charging for costs related to accidents. This includes the roles of the Accident Compensation Corporation (ACC) and private insurance to cover many of the medical, work-interruption, and property damage costs associated with road accidents and other transport mode accidents (these costs would otherwise largely be borne by individuals, employers and the public health service).

The section first analyses the overall costs associated with road accidents (to both motorised and non-motorised road users) in New Zealand, and the average costs per vehicle-km, net tonne-km or person-km where possible. It then examines the marginal costs and charges (i.e., the unit variable accident costs in response to changes in the current transport volumes); and also analyses further the payment streams (i.e., who ultimately pays for the costs resulting from transport accidents).

Note that this section covers only accidents occurring on the road system: further details of the topics covered here are set out in WP D1. Rail accidents (Section 5.5 and WP C11.6) and maritime accidents (Section 10.4 and WP C14) are covered in separate sections of this report and the supporting Working Papers.

²¹ While the NZ Household Travel Survey (HTS) includes questions on parking, these do not (at present) extend to asking about the level of parking fees paid.

²² For this Study, the term "accidents" has been chosen to describe transport incidents that lead to injuries or property damage – this includes on-road "crashes" and also other injury events to active mode users not involving any motor vehicles (for example, it also covers a cyclist slipping on a wet road surface, or a person tripping on a footpath).

4.13.2 Total and average social costs of motor vehicle accidents

The total annual social costs²³ (in year 2018/19) for road accidents involving motor vehicles (i.e., at least one of the parties recorded in the accident report was a motor vehicle) were \$5.65 billion (at June 2019 prices)²⁴. Table 4.20 provides a breakdown of these costs (in terms of costs caused²⁵) by user type and road type.

In terms of costs "caused" (i.e. where costs are assigned according to the vehicle/user judged to be primarily at fault, based on the crash reports), motorcycle accidents involve by far the highest personal risk on a per veh-km or person-km basis for motorised accidents, followed by bicycle and pedestrian accidents. The comparisons of costs caused with an allocation based on costs "shared" (i.e. where costs are assigned equally to all users involved in the accident) indicate little change in these figures. However, comparisons with costs "suffered" (i.e. where costs are assigned relative to the injury and other costs suffered by each accident participant) reveal that these vulnerable travel modes have even higher relative costs suffered, mostly offset by reductions in the allocated truck accident costs. On all three cost allocation bases, bus travel appears to be the safest mode, having the lowest cost caused or suffered per person-km.

4.13.3 Total and average social costs of non-motorised road user accidents

For accidents on the road system involving only "non-motorised" users (NMUs), including pedestrians, cyclists, wheelchair users, and users of small-wheeled powered or unpowered devices (skateboards, scooters etc), the following combined data has been obtained, based on the Crash Analysis System (CAS) and ACC datasets.

In terms of "costs caused", the figure here is an upper limit (and also represents the "costs suffered"). Given that most relevant studies have noted physical road/path defects and maintenance issues as contributing to many NMU-only accidents, it is reasonable to assume that in reality only a fraction of these costs caused can be attributed directly to the users concerned (instead of, say, roading authorities). However, the same argument could also be made of the "cost caused" calculations for motor vehicle accidents (albeit to a lesser degree).

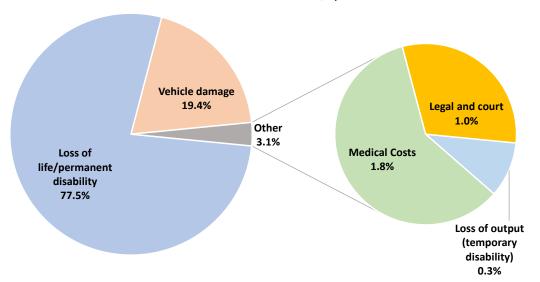
While the combined risk calculations above suggest an average accident cost per km travelled of about \$1.10 per active mode user, it should be remembered that walking and cycling also present considerable health benefits from undertaking them (refer Section 9.3 of this report), as well as other environmental benefits to society (due to lack of GHG emissions, noise, air pollution, severance, etc from walking and cycling), and these benefits are of a similar scale to the accident costs noted above.

²³ The social costs of road accidents in New Zealand include components of willingness-to-pay (WTP) based value of statistical life (or VOSL) to avoid loss of life or permanent disability, loss of productive output through temporary disability (for serious and minor injuries), medical costs, legal and court costs, and vehicle damage costs. Further information about this is given in Section 5.13.4.

²⁴ Note that this total figure is consistent with the estimate derived by the Ministry of Transport in its 2020 assessment (MoT 2020a).

²⁵ Where costs are assigned according to the vehicle/user judged to be primarily at fault, based on the crash reports.

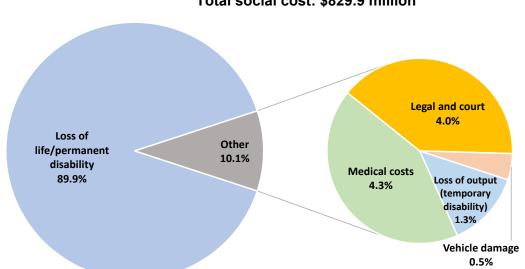
Accident category	Vehicle category	Costs caused (\$m/year)	Costs caused per veh-km (c/VKT)	Costs caused per person-km (c/PKM)
Accidents	Car/Light Commercial Veh	4,459	10.1	6.5
involving motor vehicles	Motorcycle	520	125.4	125.4
	Bus	65	21.4	2.4
	Truck	315	10.4	10.4
	Cycle	87	28.3	28.3
	Pedestrian	199	28.2	28.2
	Total/Average	5,645	11.6	7.4
Accidents NOT	Cycle	249	80.6	80.6
involving motor vehicles (1)	Pedestrian	581	82.4	82.4
	Total/Average	830	81.9	81.9
Grand Total		6,475	13.2	8.5
(all road accidents)				


Note: Approximate split of NMU-only accident costs estimated at 70% pedestrians, 30% cyclists

4.13.4 Breakdown of accident social cost components

Bringing together the above cost estimates for both motorised and non-motorised road users results in a total annual cost (in 2018/19) of approximately \$6.48 billion associated with accidents occurring on the NZ road system.

The social costs of road accidents in New Zealand include components of a willingness-to-pay (WTP) based value of statistical life (or VOSL) to avoid loss of life or permanent disability, loss of productive output through temporary disability (for serious and minor injuries), medical costs, legal and court costs, and vehicle damage costs. The breakdown of accident costs by cost category is summarised in Figure 4-4 for MV accidents and Figure 4-5 for NMU accidents.


For *accidents involving motor vehicles*, the WTP to avoid loss of life or permanent disability comprises by far the bulk of the costs, although that is less so for more minor accidents. Other than loss of life or permanent disability, most costs are very small (<2% of total social costs), particularly if non-injury accidents are ignored. Due to the sheer number of non-injury accidents (~250,000 a year), their cost component for vehicle damage is relatively large overall at over 19%.

Total social cost: \$5,644.8 million

For accidents not involving motor vehicles, the vehicle-related costs are much smaller, reflecting the high proportion of pedestrian injuries in this group, and the relatively low cost of any damage to bicycles, scooters, etc. The WTP costs of loss of life or permanent disability are now ~90% of the total costs, with the other components all contributing <5% each to the total cost.

Total social cost: \$829.9 million

Figure 4-5: Breakdown of cost components for non-motor vehicle accidents (2018/19) (by percentage)

4.13.5 Marginal costs of motor vehicle accidents

Accident prediction models (where the total vehicle-kilometres travelled VKT by the 'exposed' traffic is the key input) have been used to estimate the number of accidents, and the variation in average costs per accident, in three key dimensions:

- Higher **speeds** (e.g., on rural roads) are typically associated with more serious injuries (and a greater likelihood of deaths),
- Intersections typically involve different accident types than mid-block sections, again • with different likelihoods of death and serious injury, and

• In *congested* situations (e.g., rush hour), traffic speeds are typically slower than at uncongested times, reducing the average accident severity and the associated costs.

Three different types of road environment that contribute to New Zealand's road accidents have been modelled for motor vehicles:

- Accidents on urban streets (speed limit of 70 km/h and less)
- Accidents on rural roads (speed limit of 80 km/h and more)
- Accidents on limited-access motorways and expressways.

Within urban and rural environments, accidents are further split into those occurring at intersections and those occurring at mid-block sections (all motorway accidents are treated as mid-block, with no at-grade intersections present). Pedestrian and cycle accidents do not have the same level of data breakdown available (e.g., urban vs rural VKT); therefore, for simplification, single-factor models solely based on the active mode VKT have been used for this exercise.

Table 4.21 presents the relevant marginal costs for each road environment. These have been derived from the ratio of marginal costs to average accident costs (**MC/AC**). Where applicable, costs for both uncongested and congested situations have been shown separately. Pedestrian marginal costs are presented for all accidents (including those not involving a motor vehicle) and also only for motor vehicle related accidents.

Sub-model	MC/AC*	<i>Marginal cost</i> (c/VKT)	<i>Combined MC</i> (c/VKT)	
Urban mid-block (uncongested)	1.00 (U)	13.2	Urban uncongested	
Urban intersection (uncongested)	0.44 (U)	4.1	17.3 (U)	
Urban mid-block (congested)	-1.40 (C)	-18.4	Urban congested	
Urban intersection (congested)	-1.56 (C)	-14.7	-33.1 (C)	
Rural mid-block (uncongested)	0.80 (U)	51.3	Rural uncongested	
Rural intersection (uncongested)	0.46 (U)	5.6	56.9 (U)	
Motorway mid-block (uncongested)	1.40 (U)	5.1	5.1 (U)	
Motorway mid-block (congested)	-1.85 (C)	-6.8	-6.8 (C)	
Cycle all (uncongested)	0.20 (U)	8.1		
Pedestrian vs MV (uncongested)	0.40 (U)	12.4	-	
Pedestrian only (uncongested)	0.40 (U)	46.2		

Table 4.21 Calculated marginal accident cost rates (2018/19)

Key: * (U) = uncongested, (C) = congested

The results illustrate the congestion effects in urban and motorway environments where any relative increase in accident numbers with VKT increase is dampened by the reduced cost per accident due to lower traffic speeds. The negative marginal cost estimates for urban congested situations indicate that, in such situations, increases in traffic volumes, typically resulting in reduced traffic speeds, also result in reduced total accident costs (although maybe more accidents in total). While the relative contributions of mid-block and intersection accidents are fairly even in urban environments, mid-block accidents contribute far more in the rural environment, reflecting the relative sparsity of intersections.

Note that the VKT values for cycle and pedestrian marginal costs refer to an additional veh-km of these modes, e.g., what is the relative marginal cost from an additional kilometre cycled or walked. The findings illustrate the considerable cost suffered by pedestrians from accidents *not* involving motor vehicles (i.e., "slip, trip and fall" accidents).

4.13.6 Charges and revenues

A qualitative exploration of relevant costs and charges relating to motor vehicle accidents in New Zealand was undertaken. This exploration has identified the role of various financial streams, including ACC levies, health/life/vehicle insurance, public taxes and other personal costs. Some of these costs and charges are essentially "internalised" by the road user (i.e., the costs or charges they pay directly, reflecting their use and travel decisions) while others are external to the road user (i.e. costs imposed on them that are not a result of their travel decisions, such as safety risk imposed by risky drivers) and some of these external costs are borne by society in general (e.g., air pollution costs to urban population and through general taxation).

A comparison of ACC charges received and claims paid out of the Motor Vehicle account (roughly \$450 million per year) shows that motorcycles and (to a much lesser degree) buses continue to under-fund their relative accident treatment costs from ACC. Cars and other light commercial vehicles slightly over-pay, whereas trucks appear to also over-pay relative to their ACC claims paid out²⁶. These figures do not include the ACC payments (roughly \$70 million per year) from the Motor Vehicle account for injuries to non-motorised users (e.g., pedestrians and cyclists), who do not pay anything directly into this account. Some costs associated with non-motorised users who injure themselves away from motor traffic also come out of other ACC accounts, in particular the "Place of Sports & Recreation" account.

4.14 Road infrastructure – marginal costs of road wear

4.14.1 Overview

This section addresses the marginal costs of road maintenance and rehabilitation arising from road use. It outlines methodologies and provides estimates for social, short run and long run marginal costs (as defined below). The average (fully allocated) costs are addressed in a separate Section 5.11.2.

Heavy vehicles impose costs on all other vehicles (externalities) resulting from their impact on the pavement structure, affecting ride quality and vehicle operating costs. These costs depend on the axle load, the remaining strength of the pavement, and the volume and mix of other traffic: they continue until such time as the road is repaired.

4.14.2 Marginal cost concepts

Three marginal costing concepts were central to our work:

• **Social marginal costs (SMC)** - refers to the impacts of other traffic on vehicle operating costs (VOC) in the absence of intervention by the road agency. This is a short run externality cost, reflecting the 'without intervention' case and continuing until the road is repaired/rehabilitated.

²⁶ Note that the current ACC funding system already accounts for ongoing payment of long-term road accident injuries over multiple years in its determination of annual charges required to cover annual costs.

- **Short run marginal costs (SRMC)** refers to the additional agency cost involved in mitigating the road wear by restoring the road to its original condition (i.e., the 'with intervention' case). It also includes the externality costs imposed on other traffic prior to implementing mitigation measures.
- Long run marginal costs (LRMC) refers to the additional costs of constructing a stronger road to better accommodate additional traffic. Given the substantial economies of scale in road construction, it always appears better to cater for expected increased traffic by building thicker pavement initially.

4.14.3 Methodology

The social marginal costs (SMC) and short run marginal costs (SMRC) were estimated by applying the principles and methodology incorporated in the World Bank Highway Development and Maintenance Model (HDM-4). The relationships have been adapted/calibrated to New Zealand conditions and incorporated in the Deighton Total Infrastructure Management System (dTIMS) model framework used by (or on behalf of) New Zealand's national and local road agencies. The road database used was a sample of some 6,000 road sections of New Zealand State Highways, and rural and urban local authority roads.

Because the effect of one additional vehicle is very small (but then multiplied by many vehicles), the analyses were undertaken for increases in steps of 5% of heavy and medium commercial vehicles²⁷. Using these data to estimate the effect of one vehicle requires a linearity assumption that may be taken as an appropriate approximation, on the basis that changes of this (5%) order are likely to be of most interest in policy analysis.

Long run marginal costs (LRMC) were calculated using an estimated relationship between road strength and pavement life. This was used to estimate the extra pavement thickness and thus the cost to cater for the marginal vehicle.

The impact of additional traffic depends on the initial condition of the road (always used as the baseline) and the volume of traffic. Estimates of the marginal cost were made for eight classes of road – urban or rural, light or heavy traffic, and rough or smooth condition. The analyses were undertaken to cover a 10-year period.

4.14.4 Results and comments

The social marginal cost (SMC) defined above is the 'roughness' cost imposed on all subsequent vehicles using the road: it thus depends on how long the road is left before the surface is rehabilitated. If we were to limit the calculation to increased VOC in the year the additional traffic occurs, the SMC for rough roads is similar for all road types, all varying between \$1.30 and \$1.80 per equivalent standard axle-kilometre (ESA-km). The SMC for smooth roads (i.e., roads with IRI less than 3) is significantly lower, at \$0.14 and \$0.23 for low volume urban and rural roads respectively, and \$1.19 and \$0.49 for high volume urban and rural roads.

The SRMC is the additional cost of restoring the pavement to its original condition in response to the additional traffic. The main impact of additional traffic is to bring forward pavement repair/ rehabilitation work. The wear caused by the additional traffic results in increased vehicle operating costs, but this is partially offset by a reduction in the costs for existing traffic as the time until repair/rehabilitation is reduced. These costs will be very situation-specific and be

²⁷ It is assumed that the contribution of light vehicles to overall road wear is negligible.

influenced by the sample of roads used in the analysis. For rural roads, the estimated SRMC is less than the SMC, while for urban roads it is 2-3 times higher, consistent with a 5-year rehabilitation programme. Again, the marginal cost is significantly lower for smooth roads.

The LRMC as defined above is the cost of adding road strength (e.g., pavement depth) to cater for additional heavy traffic. Significant economies of scale²⁸ occur in terms of pavement life, so much so that the LRMC varies from \$0.06 per ESA-km for rural high-volume roads (State Highways with high truck numbers) to \$1.82 for low volume urban roads with very low truck volumes.

Both the SMC and the SRMC are higher than the estimated road user charge (RUC) per ESA. However, the marginal costs for rural roads are of similar order to the RUC. The LRMC for rural low-volume and for urban high-volume roads are in the same range as the RUC charges.

4.15 Road infrastructure-marginal costs of traffic volume (congestion)

4.15.1 Overview

This section addresses road congestion costs, which arise due to the interaction between vehicles. The marginal cost is the cost (social and road agency costs) resulting from a marginal increase in the demand for travel²⁹. These costs have been addressed through three analytical approaches, using different datasets:

- (A). At the local level, traffic speed and density observations were analysed at a number of sites across New Zealand to determine the relationships between traffic speed, density and flow;
- (B). Data from the Auckland, Wellington and Christchurch regional transport models was used to estimate the average costs of congestion in those cities³⁰; and
- (C). Road construction costs from recent and proposed road capacity expansion works in NZ were used to estimate the costs of increasing the capacity of a road to cater for increases in demand and so reduce congestion levels.

Note that this section is concerned with the road user's time costs and road agency costs relating to road capacity provision only. Other impacts of additional road traffic are considered elsewhere in this report.

As has been known for many years (e.g., Greenshields 1935), traffic flow is affected by three key elements: flow, density and speed. To estimating the effects of congestion, it is crucial to understand the fundamental diagram of traffic whereby too many vehicles attempting to use a road actually reduce its throughput. There is a large volume of literature on the subject, mostly in terms of optimum congestion charging. The economist's rule for pricing is to price equal to the externality. This is a short run marginal cost (SRMC) concept – it varies by time of day and its purpose is to ensure that the existing infrastructure is used efficiently. The long run marginal cost is the cost of expanding the road to cater for the marginal vehicle. The investment rule is then to increase capacity if the long run cost is less than the short run cost. This is

²⁸ The cost is roughly proportional to the pavement thickness, but small increases in thickness can double the life.

²⁹ Note that the marginal cost is defined in terms of the demand for transport, not the flow.

³⁰ These models are not ideal. There is some concern that the Household Travel Survey data underpinning these models is very old and the strategic models use simplistic volume-delay curves that generally do not account for intersection delay. The delay induced by ramp metering and onramp merges will also be missing. Alternate data sources are discussed in WP D2.

mathematically the same as saying invest if the benefit: cost ratio for increases in capacity exceeds 1.0. Note that the costs and benefits are very situation-specific – while the long and short run costs estimated in this Study are indicative, any actual road improvement would require a full cost: benefit analysis.

4.15.2 Approach (A): Analysis of traffic speed, density and flow relationships (site-specific)

Scope and methodology

It is possible to derive the social marginal cost on a road section by using the travel time and the free flow time to calculate the elasticity of speed with respect to traffic density (Yang et al 2019). Previous analysis of congestion in New Zealand (Wallis and Lupton 2013) indicated that the relationship between travel time and demand could be represented by a BPR function³¹. We therefore used data on traffic volumes and speeds collected on a number of urban roads across both islands to see if we could fit a BPR function to the data. This would enable us to estimate the social cost of congestion by time of day. Only sites that become congested at some stage during a typical day were studied.

In most cases, a BPR function (refer WP D2 for details) provides a satisfactory fit to the observed data, relating traffic speeds to vehicle density on the road. In some lower traffic urban situations, the observed trips formed a completely different pattern, and a hyperbolic-shaped function was required to fit the data. It appears that the hyperbolic function arises due to the effects of side friction and delay at signalised intersections: in this case, the relationship is probably not strictly causal, but is the result of higher levels of pedestrian and other activities coinciding with periods of higher traffic volumes.

The main source of data used was GPS data from vehicle navigation systems: more than 10 years of speed data on roads throughout New Zealand are available. This data was used to provide speed and number of probes (GPS units from which data is collected) by time period for fifteen roads. Most locations provided data for three separate points on the road in each direction. Data was extracted for a ten-week period during the third school term of 2019. The data was plotted and a curve that best fitted in terms of maximum speed and maximum flow was fitted in each case.

Results and interpretation

The results from the individual road sections are very site-specific, with the short run marginal cost ranging from zero (Waimakariri bridge northbound) to \$1.85/km (Dominion Road northbound). The corresponding implied annual cost of congestion averaged some \$1 million per kilometre over the chosen sites but ranged up to \$7 million per kilometre.

Some of the results may appear a little surprising, for example the low social cost of congestion attributed to State Highway 1 (now SH59) between Pukerua Bay and Paekakariki. This is most likely due to bottlenecks that restricted the traffic at each end of this stretch, and the 80km/h speed limit: this means that the free-flow speed and the speed at capacity are virtually the same, while the demand is never able to exceed capacity.

While some urban streets exhibit BPR-type congestion, as noted above, others exhibit a hyperbolic relationship where speeds appear to be constrained by side friction and signalised

³¹ This relationship was originally proposed by the US Bureau of Public Roads (BPR 1964).

intersections. The SRMC for these roads will only be significant towards the tail of the distribution where the road is approaching capacity.

4.15.3 Approach (B): Average costs of congestion – Auckland, Wellington and Christchurch regional transport model analyses

Scope and methodology

In order to get some measure of the overall average costs of congestion we need to look at entire journeys at a network level. Data from the Auckland, Wellington and Christchurch transport models was used to estimate the total congestion costs and the average cost per vehicle kilometre in the three metropolitan areas. The results for Auckland were also compared with those calculated in previous studies.

Cities tend to form around a city centre as this maximises accessibility of people to employment, business and commerce. The effect of congestion is to increase the cost of travel, in particular the cost to the centre: this warps the time vs distance relationship, increasing the relative attractiveness of non-central locations. We ranked the zones in each city under both free-flow and congested speeds and plotted the difference to show the impact of congestion on location attractiveness. This is most noticeable for Auckland, where the effect is to move the centre of attractiveness southward; it is also apparent, to a lesser extent, for Wellington and Christchurch.

Results and interpretation

The average congestion costs per pcu-kilometre faced by motorists in the three metropolitan areas were estimated using each region's transport model, with the results shown in Table 4.22. A limitation of this approach is that the transport models effectively assume a uniform 'peak' demand over a two-hour period: this is likely to under-estimate the actual delays. The average delay costs during the AM peak period vary from \$0.08 per pcu-kilometre for Christchurch to \$0.31 per pcu-kilometre for Auckland, while the long run marginal cost based on recent projects in each centre was a factor of 10 higher, at \$0.80 per pcu-km in Christchurch, \$3.20 in Wellington and \$3.10 in Auckland (refer approach (C) below). The total delay per AM peak period for Auckland is \$1.7 million per day, equivalent to \$850 million per year, while the 'avoidable' cost of congestion³² is \$400 million per year. This compares with the figure of \$145 million calculated by Wallis and Lupton in 2013, which equates to \$155 million in 2019 prices.

³² I.e., comparing with the speed at capacity rather than the speed at free-flow.

	Am peak trips	Free flow time (minutes)	Actual time (minutes)	Distance vehicle km	Delay per am peak	Delay cost per pcu kilometre	Annual cost of congestion
Auckland	543,500	6,164,000	9,366,500	5,776,000	\$1,730,000	\$0.31	\$400 million
Wellington	182,700	1,738,000	2,189,000	1,178,000	\$243,000	\$0.21	\$39 million
Christchurch	226,000	2,260,000	2,723,000	1,810,000	\$250,000	\$0.14	\$4 million

Source: consultant estimates.

The average delay per kilometre is not very helpful as the cost varies so significantly across the network. However, in the case of Auckland, a group of government officials from six agencies have considered "The Congestion Question": one of the options assessed was a cordon charge for entering the Auckland CBD. Based on our analysis we calculate that about 5% of all AM peak trips are responsible for 14% of the congestion delays currently across this cordon. The average delay for these trips is 15 minutes and the short run marginal cost is \$33 per trip. This means that the marginal vehicle dissuaded from travelling at the peak would initially reduce total network delay costs by \$33. However, if a charge were to be introduced, the effect of the charge would be to reduce demand at the peak. We estimate that the equilibrium SRMC and thus the price that would result in the peak demand for travel just equalling the road capacity across the cordon would be \$7.70 per trip. Note however that the Covid-19 situation and post-Covid adjustments may reduce the demand – and hence the price – for CBD-oriented trips, at least in the shorter term.

4.15.4 Approach (C): Costs of increasing traffic capacity (long run marginal costs)

Scope and methodology

Congestion is a short run marginal cost. The long run marginal cost is the cost of increasing the capacity of the road by one unit. Road construction involves lumpy investments, so this concept has practical issues. Waka Kotahi provided data on the capital costs of recent road capacity increases: this was divided by the expected increase in peak period capacity in order to provide an estimated marginal cost. Details of a sample of in the order of 15 -20 NZ State Highway schemes in the Auckland, Hamilton, Wellington and Christchurch areas that were completed within the last 10 years or so, or that are under construction or in an advanced state of planning, were provided by Waka Kotahi. An average lane capacity was used to estimate the cost per additional passenger car unit (pcu) of capacity.

Results and interpretation

The sample of highway schemes provided was reduced to 12 schemes that were 'normal' in terms of costs/lane km (by omitting some very high-cost schemes involving tunnelling or elevated sections). The average costs for the 'normal' schemes were \$23m/lane km for Auckland, Waikato and Wellington, and \$6m/lane km for Canterbury. These costs were translated into annual costs per pcu-km on the routes in question, giving figures of \$3.20 for Waikato and Wellington, \$3.10 for Auckland and \$0.80 for Canterbury. Since any additional capacity is primarily required for the peak periods, these figures were then translated into marginal costs per peak pcu-km.

The standard rule to determine whether infrastructure investment is optimal is that the short-run marginal cost (SRMC), which is the cost imposed by the marginal user without adjusting capacity, must equal or exceed the long-run marginal cost (LRMC), which is the cost of adjusting capacity for the marginal user. Our analyses indicated that in most cases SRMC was less than LRMC: however, there were some situations in Auckland where the SRMC exceeds the LRMC, such that capacity expansion could be justified on economic grounds.

We note that these analyses are at an abstract and generalised level. A real network contains many links each with differing demands, while practical considerations limit the design opportunities – investments are lumpy and often indivisible. Actual investment decisions should be based on scheme-specific business cases, including cost-benefit analysis, along with land use and transport modelling, which can take these and other factors into account.

Chapter 5 Rail System Appraisal

5.1 Coverage of chapter

The New Zealand rail system is used for the movement of freight, long-distance passengers, and urban passengers. Urban passenger transport is covered in a separate chapter (6), so this one is about freight and long-distance passengers only.³³ The major activity is movement of freight, along with three long-distance tourism services and two³⁴ inter-regional passenger services. Heritage operations access parts of the network from time-to-time, but their network usage is minimal and they are not covered here.

The chapter covers operating costs for both rail networks and train operation, their maintenance, and the associated capital assets. It includes rail safety, but not other externalities such as emissions and noise. (These are covered for the transport sector as a whole in separate chapters, principally in Chapter 11, with a summary of these other externalities for the rail system given in the Executive Summary section of this report.)

The Cook Strait ferries are covered separately (in Chapter 10), although the costs of moving rail freight on them are included in the costs covered in this chapter.

5.2 Overview of rail system ownership, structure, management and funding arrangements

5.2.1 Sector organisation

KiwiRail Holdings Ltd is the overall holding company for the Crown's rail business (other than the basic land ownership). It is a State-Owned Enterprise ("SOE"). KiwiRail covers both above (freight and long-distance passenger) and below rail activities in an integrated way. It is the only rail freight operator but competes (principally with road trucking and coastal shipping) in the overall freight market.

The New Zealand Railways Corporation ("NZRC") holds approximately 18,000 ha³⁵ of railway land on behalf of the Crown, for the benefit of KiwiRail. That land is leased to KiwiRail.³⁶ NZRC is a statutory corporation and is also covered by the State-Owned Enterprises Act 1986.

Auckland Transport and Greater Wellington Regional Council own rolling stock, set urban passenger rail policy, and appoint contract operators for metro trains and others (manufacturers) for their maintenance. KiwiRail continues to own and maintain the below rail infrastructure in metro areas:³⁷ AT and GWRC pay their share of the maintenance costs of this infrastructure through contracts with KiwiRail. GWRC owns 83 electric multiple units ("EMUs") and 25 locomotive-hauled passenger vehicles, and AT owns 72 electric multiple units and eight diesel units.

³³ This Study is concerned with the active rail network. Parts of the network are disused by the national rail operator, although some of these are used by tourist ventures using electric carts or by heritage railways. These are not covered by this report.

³⁴ The second, the "Te Huia" Hamilton - Auckland, train, was introduced after 2018/19 and is not covered by this chapter.

³⁵ New Zealand Railways Corporation (treasury.govt.nz)

³⁶ NZ Railways Corporation, Annual Report 2019.

³⁷ "Below rail" includes track and other infrastructure, including signalling and train control, electrical traction equipment, and station platforms. "Above rail" is the operation of trains and associated activities.

Apart from KiwiRail and the operators and train maintenance providers in the two metro areas, most of the 82 licensed rail operators are small in scale. This chapter's rail coverage is concerned with KiwiRail, principally as a freight organisation.

5.2.2 Asset ownership and oversight

The shares in KiwiRail Holdings are owned by the Minister of Finance and Minister for SOEs. They exercise oversight through the appointment of an independent Board of directors and regular performance reporting. Shareholding Ministers influence the strategic direction of the company through regular letters of expectation, being consulted on material transactions, providing commercial investments, and providing feedback on Statements of Corporate Intent. Shareholding Ministers may purchase goods and services from any SOE, with KiwiRail currently providing domestic wagon assembly and EF electric locomotive fleet refurbishment services to shareholders under this arrangement³⁸. Shareholding Ministers receive advice from the Treasury on the commercial performance of all SOEs,

There is further oversight through parliamentary reviews of performance (currently through the Transport and Infrastructure Committee). Audit NZ advises that committee and suggests lines of inquiry, which can be wider in scope than simply reflecting the Statement of Corporate Intent targets. Te Manatū Waka Ministry of Transport has a policy role e.g., in terms of reviewing funding for rail, and preparing the non-statutory annual rail plan, and being responsible for preparing and advising on transport legislation.

Under the Land Transport (Rail) Legislation Act 2020, KiwiRail now has a statutory obligation to prepare a Rail Network Investment Programme, "RNIP". The RNIP responds to the Government's strategy for rail, outlined in the New Zealand Rail Plan (aligned with the Government Policy Statement on Land Transport). The RNIP is subject to Waka Kotahi advice and to Ministerial approval. It is part of the mechanisms for wider public funding of rail. Above and below rail activities continue to be run by KiwiRail as an integrated business, but with separated accounting.

The Land Transport Management Act 2003 covers the mandatory Public Transport Operating Model (PTOM), which requires rail services operated by AT and GWRC to be contracted.

There is no obligation on KiwiRail to maintain any of the services it operates,³⁹ nor to continue to use particular lines. Closure of a line however requires ministerial approval.⁴⁰ Cessation of urban services is at the discretion of the regional council and is subject to local political control.

5.2.3 Sector regulation

Safety

The Railways Act 2005 sets out a suite of controls on railways aimed at safety. It also contains provisions for the protection of railways from external interference. It focuses on the systems used by rail operators and by rail access providers, rather than the driver focus of road transport rules. The primary obligation is to ensure, so far as is reasonably practicable, that the railway is safe in terms of having no deaths or serious injuries. The definition of reasonably practicable is the same as that in the Health and Safety at Work Act 2015 (which also applies to rail).

³⁸ State Owned Enterprises Act 1986, s 7.

³⁹ Apart from those subject to a funding agreement.

⁴⁰ New Zealand Railways Corporation Act 1981, s 14(3)

The Railways Act also provides for priority for trains at level crossings,⁴¹ and related provisions, e.g. liability and responsibility for maintenance of crossings. There are further provisions about level crossings in the Land Transport Act⁴² and the Land Transport (Road User) Rule.⁴³ The impact of all these is to give right of way to the train and oblige road vehicles to give way to rail vehicles. Rail is also subject to the Transport Accident Investigation Commission, which makes reports on selected rail accidents, including "near misses". These recommendations are taken up, and KiwiRail's reaction to them monitored, by Waka Kotahi.

Access

KiwiRail Networks manages access to the national rail system for new and existing users. As the rail network is shared by freight and passenger services, access management is required to ensure that all services and maintenance operations have fair access to the network.

Access is provided to rail users who hold a Rail Network Access Agreement with KiwiRail (as network owner) and a rail licence with Waka Kotahi (as rail safety regulator). There are eight access agreements between KiwiRail and rail operators, and all parties (including KiwiRail) are subject to Common Access Terms. Timetable committees operate in the metro networks to perform the duties and obligations conferred under the Common Access Terms, such as approving blocks of line for maintenance and scheduling passenger services.

Prices for rail activities, above or below rail, are not specifically regulated in New Zealand. Regulation of competition and access on rail relies on the general provisions of the Commerce Act 1986.

The new funding arrangements include a track user charge for freight, broadly comparable in concept to the track access charges in Europe. The track user charge is paid to the National Land Transport Fund by KiwiRail freight revenues to compensate for the wear-out costs of its freight services by using the network. Regional councils with network agreements have access to the track, and pay for the track usage for urban trains, on a negotiated, full cost recovery basis. The agreements give the councils greater say in the management of the infrastructure assets in urban areas. There is no government regulation of this process, although network funding should enable safe rail outcomes by those parties with rail safety licences. As well, a substantial part of the funding comes from the National Land Transport Fund through the RNIP, so the government can influence the process, through the triennial Government Policy Statement on Land Transport, or more directly.

There appears to be more demand for alternative operators in the passenger market than the freight market. While there is no statutory access regime for rail (unlike in some other countries), KiwiRail contracts access rights to other operators provided they comply with safety rules, e.g., Dunedin Railways, heritage groups and similar bodies, and metro operators in Auckland and Wellington.

Environment

Road, rail, and airports (but not seaports) have requiring authority status under the Resource Management Act,⁴⁴ and so can use the RMA designation process. This enables planning for

⁴¹ Railways Act, s 80.

⁴² Land Transport Act 1998, s 213A.

⁴³ Land Transport (Road User) Rule 2004, Part 9.

⁴⁴ A requiring authority can essentially tell a local body that it requires land to be designated for its work or project. Resource Management Act 1991 (RMA), s 168.

capital works, but also effectively gives consent to carry out normal operations on the designated land, operations that might otherwise require a resource consent (at the district level; resource consents are still required for regional plan issues).⁴⁵

5.2.4 Funding

KiwiRail spent about \$1.1 billion during the 2018/19 year, mostly on operating costs (\$621m) and capital investments (\$469m). Outside the metros and other grants, the capital was spent mainly on the network (\$119m) and rolling stock (\$94m).

Of the spending, \$687m was funded by its customers. Of this, \$61m was from infrastructure customers, mainly the metros. Other substantial contributions were from freight (\$403m) and Interislander (\$138m) customers.

A large contribution, \$315m, was received from its shareholder, the Crown, as an equity injection. A further \$94m was received from government agencies and local bodies for particular projects.

5.2.5 Land

As at 30 June 2019, the "rail network corridor" land, owned by the NZRC, was valued at \$3,516m.⁴⁶ This is in fact the value of all land owned by NZRC and leased to KiwiRail (long term, exclusively and for only nominal consideration), which includes yards and other land not strictly "corridor" land in the sense of a right of way between places. Land is valued on the "adjacent use" basis (i.e., across the fence).⁴⁷

The valuation has been adjusted to remove non-rail use land. On an interpolated basis⁴⁸ the value of land related to rail activities on active lines is \$2,897m for 2019. Of this, land used for urban passenger transport is estimated at \$1,389m, after adjusting for freight (and long-distance passenger) joint use. Land for freight and long-distance passenger use is estimated at \$1,508m.

5.2.6 Network now covered by National Land Transport Fund

Under Land Transport (Rail) Legislation Act 2020, now part of the Land Transport Management Act 2003, a new funding mechanism and stream has been added for KiwiRail. This followed the Future of Rail review and enables funding for infrastructure through the NLTF.

The network operations are vertically integrated but are separately accounted for to reflect the public-benefit function of the network and the profit-oriented function of the above rail businesses. KiwiRail reports on these functions separately to maintain transparency in its funded outcomes for the benefit of the public.

⁴⁵ RMA, s 176.

⁴⁶ NZ Government, "Financial Statements of the Government of New Zealand for the year ended 30 June 2019" AJHR B11, Note 16, p 87. The last valuation before 2019 was as at 30 June 2017. See NZ Railways Corporation Annual Report 2017, Note 5, p 19. The next revaluation was at 30 June 2020 and added \$259m to the value. See NZRC, Annual Report 2020, Note 5, p 18.

⁴⁷ NZ Railways Corporation Annual Report 2019 (AJHR F 18), p 4, Note 1(a), p 14 and Note 5, p 17.

⁴⁸ Between the two dates the land was revalued (2020 and 2017), on the basis that 2019 is 2017 plus 2/3 of the 2020-2017 difference.

As part of the scheme, KiwiRail (on behalf of users) and any other freight users of the National Rail System will have to pay a Track User Charge (TUC). The possibility of direct funding from the government remains open.

The TUC is based on the variable costs of providing the infrastructure, and is charged per gross tonne kilometre, including the weight of the locomotives. KiwiRail estimates its total variable infrastructure costs at \$53m pa,⁴⁹ but it is intended to phase the charge in over time. The level of the charge for the first three years has been set and will recover about 40% of variable costs by the third year; the remaining years are still subject to further review.

For 2021/22 the TUC is \$1.18 per 1,000 leading gross tonne kilometres⁵⁰; \$1.65 for 2022/23, and \$2.11 for 2023/24 and beyond,⁵¹ subject to review. How much it raises will depend on traffic levels, but on the 2018/19 level of 9.959 billion gtkm used as a base,⁵² it should raise \$11.7m, \$16.3m, and \$20.9m respectively.⁵³

The aim of the new legislation is to give effect to the Rail Plan, through access to the NLTF and the publication of an annual Rail Network Investment Programme. That programme covers all "below rail" expenditure. Over the next 10 years, KiwiRail estimates that a sum of \$444m (a year,⁵⁴ excluding metro costs and revenues, and miscellaneous revenue) would cover operating and capital requirements of a "resilient and reliable" railway, the scenario chosen by the government that underlies the Rail Plan.

5.3 NZ rail network, services and usage overview

5.3.1 Key rail statistics.

KiwiRail owns and operates 3,500 route km of track, 258 locomotives, and 4,605 wagons. Another 300 km (mostly owned by KiwiRail) is operated by heritage operators or tourism ventures. Freight is handled between train and road at 17 "Container Transfer" sites at places ranging in size from Auckland and Christchurch to Ashburton and Oamaru.

Rolling stock is maintained at one workshop (Hutt) with another being redeveloped (Hillside, Dunedin), and depots at Auckland, Hamilton, Mt Maunganui, Kawerau, Palmerston North, Wellington, Picton, Westport, Christchurch, and Invercargill.

5.3.2 Key traffic statistics

Overall, the rail business carried 20m tonnes in 2018/19, and generated 4,407 million net tonne km, including third party container tares (and miscellaneous traffic outside the main market segments in Table 5.1). The average haul was thus 220 km. It earned \$402.7m in freight revenue. Average revenue per net tonne kilometre for freight was thus 9.1 cents. Without third party container tares there were 17.3m tonnes and 3,847m ntk.

The business also generated 8,605m trailing gross tonne km,⁵⁵ giving an average cost (including network costs) of 4.7 cents per gtkm. In 2018/19, 9.58m freight train km were run, and 241m wagon km, giving an average train load of 25 wagons and 460 tonnes net with third party container tares, 402 tonnes without (898 tonnes gross). The ratio of net tonne km (including 3rd party containers)

⁴⁹ Cabinet paper "The Future of Rail: Railtrack User Charges" June 2021, para 25 on p.4 and para 46 on p.6. (www.transport.govt.nz)

⁵⁰ "Leading" tonne km include the weight of the locomotive.

⁵¹ Land Transport (Railway Track User Charges) Regulations 2021, Regulation 9.

⁵² "Rail Track User Charge Phase 2 Cost Recovery Impact Statement" (CRIS-2), p 7, footnote 6 (www.transport.govt.nz).

⁵³ Cabinet paper, above n 49, Table1, p 7.

⁵⁴ Includes inflation, train control, insurance, and overheads

⁵⁵ Gross tonne km throughout this paper, apart from the TUC calculation, are "trailing" gtkm, i.e., they exclude the weight of the locomotive. This is the normal way of calculating gtkm. The TUC calculation included the locomotive weight.

to gross tonne km was 51% and without the container tares, 45%. Further details are given in Table 5.1.⁵⁶ Most traffic (by tonnes) moves in the "Golden Triangle" area of Auckland – Waikato – Bay of Plenty.⁵⁷

Item	IMEX*	Domestic	Bulk	Forestry	Total	Total incl. miscellaneous
Tonnes, millions, freight only	7.9	1.6	2.8	4.8	17.1	17.3
ntk, millions, freight only	1,473.5	917.4	738.8	683.5	3,813.1	3,847.0
ntk, millions, incl. 3 rd party containers; and generators	1,888.1	1,031.8	753.0	688.2	4,361.1	4,407.4

Table 5.1: Key rail freight statistics (2018/19)

Source: WP C11.5, Table 2. Excludes other, miscellaneous traffic. *Import-export traffic in containers.

The data indicates the key role rail plays in handling import and export traffic in New Zealand. Besides the container traffic (IMEX) most of the bulk and forestry traffic is export commodities like coal and logs. It is estimated that rail carries 26% of all NZ's exports by weight.⁵⁸

5.3.4 Key traffic statistics – passengers

KiwiRail has a limited number of passenger trains, focused on the tourist market. The Capital Connection is an exception, as it is a commuter service.

With Covid-19, service frequencies were reduced, but all services have now resumed to their 'normal' timetable (Table 5.2)

⁵⁶ The costs include an internal transfer for the costs of carrying rail on the ferries. This is included at the rate prevailing in 2018/19. With the new ferries now ordered, this is expected to reduce.

⁵⁷ FIGS has information on origin-destination by region. Freight and logistics | Ministry of Transport

⁵⁸ KiwiRail Integrated Annual Report 2019, p 7

	Northern Explorer	Coastal Pacific	Tranz Alpine	Total long distance	Capital Connection	Total all
Route	AKL-WLG	CHC-Picton	CHC-Greymouth		Palm N- WLG	All
Frequency	Alternate days each direction	Daily return (summer)	Daily return		Weekday return	
Patronage (000)	46	34	151	231	111	342
Passenger km (mill)	25.5	9.9	30.1	65.5	7.6	73.1
Tare tonne km (millions)	43.41	16.03	35.25	94.70	14.22	108.92

Table 5.2 : KiwiRail "Great Journeys" passenger train statistics (2018/19)

Source: WP C11.5, Table 7

5.4 Valuation of the rail system assets

5.4.1 Valuation basis and summary:

The book values for the main asset categories are given in the KiwiRail *Annual Reports*. However, the values shown are the result following extensive impairment, particularly of infrastructure, rolling stock and work in progress. Consequently, they do not represent the total expenditure on assets since they were vested in KiwiRail in 2012. Nor do they represent economic values. For these reasons a steady state valuation has been used for infrastructure and rolling stock. These asset valuations are also different conceptually to the commercial valuation in KiwiRail's 2023-2025 Statement of Corporate Intent, which recorded a positive DCF equity value of \$94 million.

5.4.2 Infrastructure

Infrastructure steady state is derived from the "renewals" estimate for 2030/31 in the RNIP supporting documents, deflated at 2% back to this Study's base year, 2018/19. It includes an allowance for capital overheads. 2030/31 is the tenth year in a series that shows an early peak and later decline in expenditure for infrastructure assets. The tenth year might be expected to be nearing steady state.

5.4.3 Rolling stock

Rolling stock was valued on two bases:

- Replacement costs less depreciation. Much of the fleet in the Study year was beyond its depreciation life and thus has nil value on this basis. There was only minor scope for optimisation as the vehicles that could be optimised were beyond their depreciation life, apart from some container wagons, where optimisation would reduce the overall wagon fleet value by 4%. This valuation understates the assets required to run the railway, owing to the large number of old vehicles then in the fleet.
- For the purposes of estimating a steady state there was an alternative valuation on the basis of replacement costs for the whole fleet, less optimisation gains, and the assets assumed to be at half life. This is the preferred method for this Study.

5.4.4 Other assets

KiwiRail assumes the book values of plant and equipment are a reasonable indication of their value, and does not attempt an ODRC valuation. This is also assumed here, with the very minor impairments not removed. The book value of plant and equipment is \$126m; assuming 90% is freight related, the value is \$114m. Land valuation is discussed above.

5.4.5 Asset valuation and return – Rail

The assumed rate of return for the whole DTCC Study is 4% real. Applying this yields the following return (Table 5.3).

Asset type	Valuation \$M	Return @ 4% pa \$M
Land	1,508	60.3
Infrastructure	5,010	200.4
Rolling stock – locomotives	597	23.9
Wagons/containers	362	14.5
Passenger cars	90	3.6
Other assets	201	8.0
Total	7,768	310.7

Table 5.3: Summary of asset values and return for rail freight and long-distance passenger

Source: WP C11.3, Tables 6 and 7.

The values for passenger cars are fully attributable to the passenger operation, and wagon/ containers to freight. Land, infrastructure,⁵⁹ locomotives, and other assets are shared between long-distance passenger and freight, but passenger only has a very small share (1% on gross tonne km).

5.5 Rail safety

5.5.1 Performance

The incidence of rail casualties is very sparse, with few in total each year, and fewer still, sometimes none, in finer categorisations. As well, the numbers vary considerably from year to year. For these reasons the approach was to take an average of a time series for the ten calendar years 2010-2019 (Table 5.4). From the basic data supplied by the regulator Waka Kotahi, there were 14.8 deaths a year on average over 10 years, and 6.8 serious injuries. This data was expanded to include minor injuries, and type of train, using KiwiRail information. From the expanded data, most deaths and serious injuries were associated with freight trains, followed by urban passenger trains. Urban areas had a much greater density of trains than rural areas, but there was also a higher level of protection in urban areas.

⁵⁹ The infrastructure figure is derived from the valuation in AJHR B11 (above n 46, p 95). That gives a total of \$6,407M, made up of "rail infrastructure" (\$6,264M) and buildings and work in progress (\$143M). The total is allocated to metro and freight. The allocation in this paper differs from that in the B11 paper.

	Level Crossings	Unauthorised Access	Other	Total
Deaths	4.9	9.7	0.2	14.8
Serious Injuries	3.8	1.2	1.8	6.8
Minor injuries	5.3	1.1	0.2	6.6

Table 5.4:Ten calendar year average casualty data (2010-2019 inclusive)

Source: Principally Waka Kotahi. See WP C11.6.

These numbers included 1.2 serious injuries a year to employees (no deaths), and no deaths or serious injuries to passengers from actual collisions, although there were a small number of platform and boarding/alighting deaths and injuries.

Nearly all the non-level crossing deaths were from unauthorised use of the corridor, 65% of all deaths including level crossings, but a much lower proportion of serious injuries (16%). Some 60% of the deaths were suicides.

In the accidents involving passenger trains, in almost all cases it is not the passenger who suffers the cost but people in cars or non-employees on the track. So, calculations of cost per passenger km are misleading. For a person comparing modes with respect to risk of travel, it is not useful to compare the rail costs with other modes. Train passengers bear very little of the rail costs, but car users bear a large share of the costs from collisions either with a train or other object.

5.5.2 Attribution of crossing accidents and suicides

Level crossings

Level crossings can be seen simply as intersections, but between a road and a railway. An analogy would be an intersection between two roads of different levels in the hierarchy, say a secondary road and a major road. As such they are treated in a similar way to road intersections. Nearly all (95%) public level crossings in New Zealand have at least a give way sign or a stop sign. They have the same legal force at a level crossing as at a road intersection.

Irrespective of the type of sign (or no sign) the road driver must give way to a rail vehicle which is within 800m of a crossing and must not drive across a crossing when there is a risk of collision with a rail vehicle.⁶⁰ The consistent impact of the legislation and road user rules is to put the liability on the motorist to give way to the train. If he or she fails to do so, and a collision occurs, prima facie the road driver is at fault. For that reason, level crossing accidents are road accidents and not rail accidents. Even though they may involve a rail vehicle, that vehicle is not the cause of the accident.

On this basis 100% of level crossing casualties are thus attributed to road. This makes little difference to the road costs, but rail freight costs per ntk would rise substantially if a share was attributed to rail (although still well under road's safety costs).

⁶⁰ Land Transport (Road User) Rule 2004, Rule 9.1

Unauthorised use of the rail corridor

"Unauthorised use" is a substantial contributor to the statistics. 9.7 of the 9.9 non-level crossing fatalities in Table 5.4 are due to people with no right to be there. There is no right of access to a railway without permission. In fact, over 65% of all fatalities on the railway relate to these people.

A number of those on the corridor without authority will be people seeking an informal shortcut or who have lost their way. But a large number in KiwiRail's incident data are clearly deliberate acts, such as lying down on the tracks, jumping in front of a train, or jumping off a bridge into a train's path. Official statistics show 61 deaths by suicide with trains in the 10 years to 2017.⁶¹ TrackSAFE NZ estimates that about 60% of all 'unauthorised use' fatalities since 2012 have been intentional.⁶²

Waka Kotahi does not adjust its rail figures for suicides. They are however excluded from road accident data.⁶³

Railways may offer an opportunity to commit suicide, but if they did not exist, other means would be found. In fact, they are a relatively uncommon means for suicide, being involved in only 1% of all suicides.⁶⁴ Railways per se are not the cause of suicides. For the purposes of this Study, the estimated suicide fatalities are not included as a rail cost, just as they are not for road.

5.5.3 Economic costs of safety

The casualties were quantified in monetary terms by using Te Manatū Waka's Value of Statistical Life ("VoSL") and other social costs. VoSL includes loss of life and life quality, and other social costs cover loss of output from temporary incapacitation, and medical, legal, and vehicle damage costs. In addition, the Ministry has calculated the vehicle damage costs for non-injury crashes.

The total deaths were valued at \$67.5 million pa, and serious injuries \$3.1 million pa. An estimate was made of minor injuries using KiwiRail information, and they were valued at \$0.2 million. The total costs of death and serious injury were thus \$70.9 million per annum. Of this, \$44.9 million was from unauthorised access, \$24.3 million from level crossings, and \$1.8 million from other types of incidents.

Table 5.5 below includes these costs and also estimates of freight delay, mainline derailments, level crossing protection and damage, and TAIC and other administration.

⁶⁴ SIx out of 584 total suicides in 2017 (provisional; c.f. road 10). Analysis of all methods of suicide, Chris Lewis, Ministry of Health, personal communication.

⁶¹ Cf 48 for road. Source: Ministry of Health Mortality Data Collection.

⁶² TrackSAFE NZ, Megan Drayton, personal comm.

⁶³ See "Exclusions", Ministry of Transport "Glossary" https://www.transport.govt.nz/statistics-and-insights/Glossary-and-references/

Cost category	Rail	Road	Not transport	Total
Casualty and incident costs	26.1	24.3	26.6	77.0
Other costs	12.1	2.7	0.0	14.8
Total	38.2	27.0	26.6	91.8

Table 5.5:Summary of rail safety costs (\$M)

Source: WP 11.6, Table 4.1. "Road" casualty costs are the level crossing costs, "Not transport" are the suicide costs.

5.5.4 Comparison of road and rail freight safety costs

Road and rail freight costs can be compared on a per ntk basis. In WP D1: Costs of Road Transport Accidents, the costs are assessed on the basis of an 8.37t average truck load. This results in a cost per net tonne km of 1.5 cents. However, on the reasonable assumption that crash costs are related to VKT, the load assumption changes the ntk and the resultant safety costs per ntk. WP C5 (Table 4.3) estimates an average load of 17.3t as a more comparable figure with rail transport (road largely competes with rail with heavy trucks on State Highways). On the basis of the social costs alone, road freight casualties cost 0.73 cents per ntk, and rail freight 0.2 cents. If road policing and external safety administration costs for rail are added, the road figure is unaltered and the rail figure rises to 0.3 cents.⁶⁵

5.6 Long run variable costs

5.6.1 Operating costs

A cost is variable if it moves directly in response to changes in volume, that is if an additional tonne-kilometre is carried the costs increase. Variable costs are a close proxy for marginal costs. In a railway environment such a change is often very small, and most costs would be effectively fixed over a quite large change in output. However, many of these changes cause small incremental changes in costs that eventually get reflected in actual costs on the ground, for example when significant extra traffic makes trains heavier and so they consume more fuel. It is more appropriate to regard all such costs as variable, as they eventually do result in increased costs.

Fixed operating costs are those that do not vary even at the level of the train or line. Before network costs, these are ferry costs for rail freight, buildings and corporate costs.

Network operating costs consist of inspection and maintenance costs. Inspection costs do not vary with traffic levels, except on a very long time frame, and are regarded as fixed. Part of the maintenance cost is not related to wear but to environmental degradation like rust and other decay. In an analysis prepared in the context of Track User Charges, the variable costs were assessed at 41% of infrastructure maintenance and operating costs. The remaining operating and maintenance costs do not vary (or only very slightly) with train movement, like bridge maintenance, and formation work. Overall network fixed operating costs were assessed at 59% of the total.

That analysis did not include the corporate overheads, nor buildings. Nor did it include the variable aspects of train control. Adjusting for these we can estimate the overall level of network variable costs at 25% and fixed at 75%. This makes the variable component for freight and the fixed **at 75%**.

⁶⁵ Further detail is in Appendix G to WP C3.6.

Adding these to the non-network costs we get a total variable cost of 66% and a fixed cost of 34%.⁶⁶

5.6.2 Variability of capital costs

In principle, all wagon and locomotive and similar asset investment is variable with usage in the long run. However, once purchased the capital costs are not variable for many years and can be regarded as fixed costs. At the margin increased usage of such assets has no cost, until they wear out and are replaced, or the demand exceeds the capacity of the fleet and new capacity is needed.

Most infrastructure assets are also fixed costs. Once purchased their usage does not diminish their value. Again, those assets have zero marginal costs with usage. These include assets with very long lives like bridges, tunnels, and formation. Track itself has a number of elements that do wear with usage, and which can be regarded as variable costs, such as rails and ballast. Not all their deterioration is due to use, as some of it is related to environmental factors like rusting.

The overall variability of track is assessed at 31% (from Track User Charges analysis). Track is 48% of the RNIP figures, so 31% amounts to 15% of the total RNIP figures being variable: and 11-12% of the overall annual capital costs excluding ships (\$316m), and of freight only (\$307m).

While the business overall made a deficit of

. The government now funds the network costs, so the overall position above does not indicate the position of the above rail business. Before Track User Charges, but including capital charges, the broadly estimated net position for the above rail business is **1000**⁶⁷

⁶⁶ Redactions by KiwiRail

⁶⁷ Redactions by KiwiRail

5.7 Financial and economic performance summary

Table 5.6 below summarises the fixed and variable operating and capital costs of the railway.Table 5.6:Total fixed and variable costs of the rail transport

\$M	Total Freight	Networks	Train operations	Long distance passenger			
Operating costs							
Fixed							
Variable							
Total Operating							
Capital costs							
Fixed							
Variable							
Land	Data withheld by KiwiRail						
Return Fixed							
Return Variable							
Return total							
Total Capital							
Total Costs							
Fixed							
Variable							
Total							
Revenue	402.7	-	402.7	30.9			
Margin on total costs		Data with	abold by KiwiPoil				
Margin on variable costs	Data withheld by KiwiRail						
Safety costs external to KR	14.5	-	14.5	0.9			
Environmental costs	90.4	0.4	90.0	0.4			

Source: WP C11.3

Chapter 6 Urban Public Transport

6.1 Overview

This chapter summarises the Study analyses relating to NZ Urban Public Transport (UPT) passenger services. The three principal UPT modes in NZ are bus (all regions), urban rail (AKL and WLG) and urban ferry (principally AKL, but also plays a small role in several other regions).

The work has focused on three main topic areas, each of which are covered in this chapter, as follows:

- Section 6.2: Overview of the national picture. These analyses focus on the 2018/19 UPT supply, demand and cost statistics and performance measures, on a national aggregate basis and a regional basis, and also broken down between the three main UPT modes. Additional analyses, covering the 6 years 2018/19 2023/24, were requested subsequent to completion of the main phase of the UPT work: these analyses are summarised here and set out in more detail in the UPT Working Paper C12.
- Section 6.3: Case study appraisal of Wellington urban rail services. This analyses the total costs, average costs and user charges (fare revenues) for Wellington's 2018/19 urban rail system, disaggregated by time period and rail line. Additional analyses address the marginal (financial) costs associated with changes in service levels and with exogenous changes in demand.
- Section 6.4: Case study appraisal of Wellington bus services. This analyses WLG bus service costs, patronage and fare revenues to assess financial performance (total costs, average costs, fare revenues and subsidies) in aggregate and by peak/off-peak periods. It also assesses the marginal (financial) costs associated with changes in levels of service by time period; and the marginal 'economic' costs (including externalities) resulting from exogenous demand changes and consequent adjustments to service levels. All these analyses for the bus system have been undertaken at a region-wide level: analyses by individual corridor or route have not been carried out.

The following points should also be noted in relation to this chapter:

- This chapter focuses on the direct financial and economic effects associated with the urban public transport sector. External impacts associated with this sector and changes to the sector, such as congestion and environmental impacts, are addressed in other chapters of this report.
- In addition to the national picture (Section 6.2), the case study approach (based on Wellington's urban rail and bus services) has been adopted to provide greater depth of analysis of these two modes/services – in preference to attempting 'once over lightly' analyses of all UPT services (only bus services in almost all cases) in every region.
- All analyses in this chapter focus on the PT segment (i.e. bus stop to bus stop, or rail station to rail station) of multi-stage journeys, rather than the total (door-to-door) journey from the passenger perspective. This is consistent with the modally-focused approach taken in other chapters of this report; but it needs to be kept in mind when comparing the study outputs across different modes (e.g. car travel, which often provides a door-todoor service, with rail or bus travel, which typically also involve separate access and egress trip 'legs' to together comprise a door-to-door trip).
- Apart from some minor exceptions, all the cost figures in this chapter cover the full financial costs of the PT services, with no hidden subsidies. In particular: (i) appropriate financial costs and cost allocations for infrastructure and vehicles are included; and (ii)

bus services pay the appropriate road user charges (RUC) and pay commercial prices for (diesel) fuel and other input costs.

 Given our 'case study' approach, we have not attempted to provide a full analysis of costs by cost category, which would represent the national picture for each of the three UPT modes. However, we consider that our Wellington urban rail services case study will give a good guide to the cost structures for urban rail in both Wellington and Auckland; and that our urban bus services case study (for Wellington) will give a good guide to the cost structures for urban bus services in all NZ centres where these operate (refer Section 6.2.2 for further information on the national picture).

Consideration of the school bus services provided by the Ministry of Education (mainly in rural areas) was outside the scope of the DTCC Study. However, some aggregate statistics for these services and some broad comparisons with the urban bus services covered in this paper are covered in the UPT Working Paper (C12).

6.2 National picture

6.2.1 Setting the scene

The local (predominantly urban) public transport services in New Zealand are provided largely by buses, which operate within and to/from 13 urban centres. Urban rail services also serve the two largest centres (Auckland, Wellington); while local ferry services operate mainly in Auckland and with very limited routes in several other centres.

These public transport services are primarily the responsibility of the relevant regional councils. These councils are responsible for determining service levels, hours of operation and fare levels, as specified in regional public transport planning and policy documents. All the services are contracted out to private operators, with the regional councils being responsible for operator procurement through periodic competitive tendering and also for ongoing contract management. Contract prices for bus and ferry services were previously determined through the tendering process on a net cost basis in almost all cases (i.e., the operator tendered a net price, representing the difference between their estimated costs and their expected fare revenues, and they retained all passenger revenues collected). With the introduction of the NZ Public Transport Operating Model (PTOM) in recent years, the previous net cost contracting model has been replaced by a gross cost model, with operators bidding on the basis of expected gross costs and with all passenger revenues being returned to the regional council.

Local (city/district) councils also have a modest role in the provision of local public transport services, principally through the provision of on-street infrastructure, such as bus priority lanes, bus stations/interchanges, street signage, bus stop facilities, etc.

Apart from the local council roles (and associated funding), the costs of local public transport services are funded between three main parties, i.e. users of the services (through fares), regional councils and central government (through WK). The total annual gross costs of some \$1,300 million (for 2018/19) were funded approximately 28% through fares, 31% by regional councils (which recover these costs mainly through regional rates) and 42% by central government (recovered mainly through general taxation).⁶⁸

⁶⁸ No attempt is made in this paper to cover PT funding arrangements in more detail.

6.2.2 Local public transport service statistics and performance

Table 6.1 provides a summary of 2018/19 NZ local PT statistics and performance ratios, at a national aggregate level and broken down by the three main PT modes. Brief comments are as follows:

Patronage and fare revenue:

- On a national level, bus services accounted for some 74% of all PT passenger boardings, 56% of passenger kilometres and 59% of fare revenues. Train services accounted for 21% of boardings, 38% of passenger kilometres and 29% of fare revenues. Ferry services accounted for the residual proportions (between 5% and 11% on each measure).
- Bus trips averaged some 7 km, much shorter than train trips (17 km) and ferry trips (12 km)⁶⁹.
- Bus fares in all the main urban regions (together with train fares, in both Auckland and Wellington) are based on concentric zonal fare systems but within a broad 'flag-fall plus distance' fare structure. Consequently, given that urban train travel generally involves longer distances than urban bus travel, the average fare per boarding for buses is lower than that for trains, but the average fare per passenger km is generally higher for buses.

Operations, operating costs and cost recovery:

- Of the total gross costs (\$1,357 million in 2018/19), the bus services accounted for some 57%, the train services for 38% and the ferries for 6%.
- The farebox cost recovery for the three modes was 28% for bus, 21% for train and 57% for ferry. After allowing for the fare revenues, the split of net subsidies across the three modes was 56% for bus, 41% for train and 3% for ferries. So, the relative performance of bus and train in terms of recovery of costs from fares was broadly similar. Unsurprisingly, the net subsidy per passenger boarding was substantially higher for train (average \$11.36) than for bus (average \$4.44), whereas the subsidy per passenger kilometre was broadly similar for bus (\$0.63) and train (\$0.67).

Not shown in Table 6.1, but of considerable relevance in understanding the NZ public transport market, are the differences between the larger (metropolitan) centres and the smaller urban centres and their catchment areas. The three largest regions (in PT terms) together account for 91.5% of all local PT trips made in NZ: Auckland accounts for 59.3%, Wellington for 23.9% and Christchurch for 8.2%; while all other centres combined account for the remaining 8.5%. An alternative perspective on this is the relative PT trip rates per person in the different regions: the average local PT trip rate for NZ urban centres (2018/19) was 42.4 trips per year; but this figure was made up of an average of 59.2 trips across the three dominant regions, 13.8 trips for the four 'medium' regions in PT terms (Waikato, Otago, Bay of Plenty, Manawatū-Whanganui) and only 4.7 trips on average for the remaining six regions.

In general, we find that the cost recovery performance of PT services is relatively constant over the different regions: for most regions (including those with relatively low levels of PT usage), the cost recovery ratios (i.e., fare revenue: total operating costs) are in the range 25% - 30%, with Wellington being the most notable outlier, with a ratio of 38% (representing the weighted average farebox cost recovery over its three PT modes). Taken together with the relative trip

⁶⁹ Note that these figures are the average distances per boarding, while a complete passenger trip may involve more than a single boarding.

⁷⁰ It should be noted here that, in general, the train services operate in the higher demand corridors, whereas most of the bus services operate in corridors of much lower demand. Further analysis would be required to assess the relative financial performance of the two modes on more comparable corridors (e.g., comparing the AKL Northern Busway services with the train services in the AKL rail corridors).

rates by region, this means that the pattern of subsidy is very skewed towards the major regions with high PT use, but is approximately proportional to the extent of usage: for example, the three largest regions account for 91.5% of total boardings and 90.8% of total subsidies (i.e. including both national and regional funding sources), whereas the six regions with the lowest PT trip rates together account for only 1.4% of total boardings and 1.3% of the total subsidy.

Ref	Indicator (note 1)	Units	Bus	Train	Ferry (note 2)	Total		
Patronage and fare revenue								
D1	Passenger boardings	mill	126.0	35.8	7.9	169.7		
			74%	21%	5%	100%		
D2	Passenger km	mill km	890.3	606.9	90.8	1,588.1		
			56%	38%	6%	100%		
D3	Fare revenues (note 3)	\$ mill	212.4	106.0	41.3	359.7		
			59%	29%	11%	100%		
D4	Ave distance/boarding	km	7.07	16.94	11.55	9.36		
D5	Fare rev/pass boarding	\$	1.69	2.96	5.25	2.12		
D6	Fare rev/pax km	\$	0.239	0.175	0.455	0.227		
Opera	itors and costs							
S1	Service km (note 4)	mill	115.82	7.99	1.65	125.46		
			92%	6%	1%	100%		
S2	Gross costs (note 5)	\$ mill	771.3	513.3	72.0	1,356.6		
			57%	38%	5%	100%		
S3	Gross costs/service km	\$	6.66	64.24	43.63	10.81		
Suppl	y & demand indicators							
R1	Pass km/service km (ave load)	#	7.69	75.96	55.05	12.66		
R2	Gross - revenue (net subsidy)	\$ mill	558.9	407.2	30.7	996.8		
			56%	41%	3%	100%		
R3	Fare rev/cost ratio (cost recov)	%	27.5%	20.7%	57.4%	26.5%		
R4	Gross cost/pass boarding	\$	6.12	14.32	9.16	8.00		
R5	Gross cost/pass km \$	\$	0.866	0.846	0.793	0.854		
R6	Net subsidy/pass boarding	\$	4.44	11.36	3.90	5.88		
R7	Net subsidy/pass km	\$	0.628	0.671	0.338	0.628		

Fable 6.1: Summary of urban transport statistics by mode (2018/19)
--

Notes:

All financial figures exclude GST 1.

Ferry statistics include a small component for the Wellington cable car service 2.

Fare revenues exclude government payments in lieu of user payments under the Supergold scheme (such payments are 3. treated as part of the general subsidy, rather than as a fare substitute

4. Service km for trains based on train distances (not unit or carriage distances)

Gross cost by mode includes a small component for share of overhead/non-allocated costs 5.

6.2.3 Medium-term UPT financial outlook (2018/19-2023/24)

To better understand trends in UPT costs over the medium-term future, additional analysis of UPT expenditure and revenue were undertaken using forecasts from the NLTP and other sources for the six-year period 2018 /19 – 2023/24. The figures provided have been 'deflated' here to 2018 /19 prices, so as to be directly comparable with the other figures in this chapter and generally throughout the DTCC study.

The following summarises the aggregate expenditure levels and trends over the six-year period, expressed relative to the 2018/19 levels, by mode (rail, bus, ferry) at an aggregated national level:

- **Operating costs.** Over the six-year period, total opex increases from its 2018/19 level at a gradual rate, increasing by about 30% (real terms) over the period.
- **Capital costs.** The forecast level of capital expenditure increases sharply over the period compared to the 2018/19 level. The annual figures increase from about \$440 million in 2018/19 to \$1,050 million in 2019/20 and to approximately \$2,000 million in 2021/22 and for the following two years.
- **Fare revenues.** Passenger (farebox) revenues remained relatively constant in real terms although with an apparent dip in 2020/21: however, there is some doubt as to the reliability of these figures, including the extent to which they take account of the effects of the Covid-19 pandemic in the early part of the six-year period.
- Cost recovery. As a proportion of total opex, capex will increase from around 40% in 2018/19 to about 150% from 2020/21 onwards. The great majority of the capex relates to urban rail, principally in Auckland: the Auckland City Rail Link (CRL) is a major contributor to this sharp increase in capex⁷¹. The result of this rapid increase in costs, together with forecasts of only small changes in fare revenues, is that the overall national UPT cost recovery on opex alone is forecast to decline from 33% in 2018/19 to 26% from 2019/20 onwards; while the cost recovery on total costs (i.e., including capex) would decline from 24% in 2018/19 to 10% -11% from 2020/21 onwards. These figures indicate major shifts in the level and pattern of UPT expenditures and funding requirements over a relatively short time period.

These trends are illustrated in Figure 6-1.

⁷¹ The CRL cost figures given here exclude the scheme's cost increase of over \$1.0 billion, which was made public in early 2023 (ie after the analysis work in this chapter was completed).

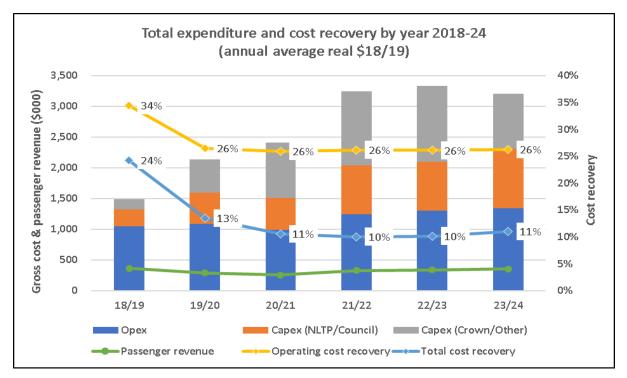


Figure 6-1 Total national UPT expenditure and cost recovery, 2018-24 (\$18/19) 72

6.3 Urban rail services—Wellington case study

6.3.1 Wellington's urban rail system

Key characteristics of the Wellington urban rail system include the following:

- Total network length of 154 route kilometres (most routes are double-tracked) and 53 stations.
- The network comprises three main lines, radiating from Wellington Railway Station: (i) Kapiti line (to/from Waikanae); (ii) Hutt Valley/Wairarapa line (to/from Upper Hutt and Masterton, with a branch line to/from Melling); and (iii) Johnsonville line (to/from Johnsonville).⁷³
- The majority of the route length is electrified (overhead wires), with the great majority of services being operated by 83 2-car Matangi EMUs, which have been introduced in two tranches since 2007. The remaining services (to/from the Wairarapa area) continue to be operated by a small diesel-hauled carriage fleet (but future options for these services are currently under review).⁷⁴
- Most of the rail system assets (including the EMUs) are owned and controlled by GW, while most operational and maintenance functions are contracted out, through two main contracts: (i) contract with KiwiRail, for long-term access rights to the rail network in the region together with the provision of network maintenance and train control functions;

⁷² We are unclear about some of the assumptions made in estimating these cost recovery ratios, particularly in regard to future fare levels, service levels and treatment of the impacts of Covid-19 on patronage and revenues.

⁷³ A 'semi-urban' rail passenger service (the 'Capital Connection') also operates between Wellington and Palmerston North. This service is not covered in this chapter, as it is not generally regarded as an urban service: it is managed and funded separately (through KiwiRail rather than the Greater Wellington Regional Council).

⁷⁴ In late May 2023 (after this report was completed in draft form), the NZ Government announced its intention to be the main funder of proposals for major improvements to the train services linking Wellington to Masterton and to Palmerston North. Full details of these proposals are yet to be released.

and (ii) contract with Transdev, for the operation of passenger services and maintenance of the rolling-stock.

• Total value of the rail-related assets owned by GW is \$476.5 million.

6.3.2 Total rail operating costs

Total operating costs for the Wellington rail system (2018/19) were some \$148 million, disaggregated as shown in Table 6.2.⁷⁵

Table 6.2: Summary of Wellington Rail Operating Costs and Capital Charges 2018/19

Cost item	Cost – \$mill	Notes
Operating costs:		
Rail operations	60.67	Most of these costs are payments to Transdev for the operating contract.
Network operations and access	34.85	Most of these costs are payments to KiwiRail for network operations, maintenance and renewals (Including network traction electricity)
Occupancy costs	5.17	These costs relate mainly to station expenditures, security, lease charges and rates
Metlink & management services	12.08	Comprises GW common services (information, ticketing etc) and management overheads
Total operating costs	112.77	
Capital charges:		
Depreciation – rolling stock	13.40	Depreciation charges as used for accounting
Depreciation – stations etc	3.04	purposes
Capital charge – rolling stock	14.61	Economic capital charges calculated as 4% of the
Capital charge – stations etc	4.23	depreciated asset values (included for Study purposes)
Total capital charges	35.28	
Grand total costs	148.05	

6.3.3 Rail system performance statistics and allocated cost analyses

Table 6.3 provides some key performance statistics (2018/19) for the Wellington rail system. At an aggregate level, some 14.3 million passenger journeys (boardings) were made with total fare revenue of \$53.1 million. This resulted in overall cost recovery of 36% and an average subsidy per passenger journey of \$6.63.

⁷⁵ The cost figures given in Table S3.1 are identical with those given in GW's rail system accounts, with the exception that we have added in a capital charge on assets (rollingstock, stations etc) of some \$19 million, which represents 4% of their total depreciated asset values (\$476.5 million): inclusion of this cost component is consistent with wider practice across all capital assets in the DTCC Study.

Item	Units	Peak (1)	Off-peak	Total
Passenger boardings	million	9.54	4.78	14.32
Passenger kilometres	million	231.5	108.0	339.5
Fare revenues (2)	\$million	37.5	15.6	53.1
Fare revenue/boarding	\$	3.93	3.26	3.71
Fare revenue/pass km	\$	0.162	0.144	0.156
Gross costs	\$million	88.0	60.0	148.1
Cost recovery	%	43%	26%	36%
Subsidy/passenger	\$	5.30	9.28	6.63
Subsidy/passenger km	\$	0.22	0.41	0.28

Table 6.3: Summary of Wellington Rail Performance Statistics - Peak vs Off-peak

Notes: (1) Peak period covers all weekday trips departing their origin station before 0900 and between 1500 and 1830; all other trips are categorised as off-peak.

(2) Fare revenues exclude Supergold Card reimbursement payments from Government (i.e., these are treated as part of the general subsidy).

Table 6.3 also provides a breakdown of statistics between peak and off-peak periods. It is seen that the demand profile is highly peaked, with approximately twice as many boardings in the peak periods (in aggregate) as in the off-peak periods. Given this demand pattern, the 'supply' profile is also highly peaked, primarily through the provision of longer trains (up to 4 coupled units, i.e., 8 cars) in peak periods compared with generally single units outside these periods. Our 'neutral' allocation of costs, as shown in the table, indicates that total peak period costs (\$88.0 million) are some 50% greater than total off-peak costs (\$60 million).⁷⁶ Based on this cost allocation, it is seen that the cost recovery performance in the peak periods (43%) is considerably higher than in the off-peak periods (26%); and the subsidy per passenger (and per passenger km) in the peak periods is only just over half that in the off-peak periods.

Further analyses of financial performance by line and time period, focusing on the two main lines (Kapiti Coast and Hutt Valley) which account for some 80% of system patronage, indicate that the cost recovery proportions tend to increase with trip distance while the \$ subsidy per boarding remains fairly constant with distance: the subsidy levels for travel to/from the outer ends of these two lines (i.e. Waikanae and Upper Hutt) are around \$10 per boarding, somewhat lower in the peak periods, higher in the off-peak periods.

6.3.4 Marginal cost analyses

Marginal costs were examined for both peak and off-peak periods, on two bases, i.e.: (i) a supply-based perspective, assessing the costs at the margin of increasing service levels, in peak and/or off-peak periods; and (ii) a demand-based perspective, assessing the service level and related cost impacts of exogenous increases in passenger demand. The findings may be summarised as follows:

⁷⁶ This allocation of costs has been undertaken primarily on the basis of train or unit hours, train or unit kilometres and units in service. The main component of joint costs relates to the number of units in service: all the costs for the peak-only units have been allocated directly to the peak period; while the costs for those units used in both peak and off-peak have been allocated in proportion to their unit hours operated in each period.

- **Off-peak periods.** There is more than adequate capacity on the present off-peak services, so the marginal costs of accommodating additional passengers would be minimal. If additional services were required for any reason (e.g., to improve service frequencies on 'policy' grounds), the incremental costs for these would be relatively modest, less than half the costs (per unit hour) of an equivalent service increment in peak periods.
- **Peak periods**. The current service intervals have been specified so that the services are effectively full to capacity (based on current NZ loading standards) in the peak period/peak direction at their maximum load point. Any significant increase in peak period demand (through the maximum load point) would therefore require a proportionate increase in peak capacity which would translate in practice into a similar proportionate increase in total units required in the fleet and the number of trains operated in the peak period. To run one additional (6-car) train in both peak periods would involve an additional cost (including annualised capital charges, principally for additional EMUs) of around \$4.3 million pa, with incremental passenger revenue of around \$1.4 million pa (on the basis that this train would have similar loadings to the existing services). Per incremental passenger, the gross costs would be around \$10.50 per trip and the fare revenues around \$3.30.

6.4 Urban bus services—Wellington case study

6.4.1 NZ Urban Bus Cost Model

Rather than base our case study analyses directly on the 2018/19 contracted costs for operating bus services in the Wellington region, we developed a set of unit cost rates which are more representative of the costs applying (in early/mid 2019) to competitively tendered contracts in the main NZ regions. These rates were established through an open tendering process (in most cases in 2018) in each region: this process resulted in relatively similar cost rates across tendered contracts in all the main regions. These rates have been used as the basis for all our analyses for urban bus services in this section.

However, we note that in recent years (under the PTOM regulatory/contracting model) substantial proportions of the bus service contracts in Wellington (and also in Auckland) were subject to a negotiation process with incumbent operators rather than competitive tendering: in general, these negotiated contracts in both these regions resulted in significantly higher cost rates than the tendered contracts in these and the other main regions⁷⁷. These higher rates have been used in Section 6. 2, which is based directly on the annual financial statistics for each region.

The bus cost model developed for the Wellington bus case study (details in Section 7.4.2) is as follows:

Total cost = \$49.22 * service hours + \$1.66 * service kms + \$52,600 pa * peak buses.

Note that: (i) the model relates to 'standard'-size (c 40 seat) diesel buses; (ii) the 'peak bus' term includes an annualised (depreciation and interest) charge to reflect bus capital costs; and (iii) the model is expressed in terms of service hours and kilometres based on timetable statistics only (typical allowances for dead running etc are incorporated in the unit rates).

⁷⁷ This cost differential for negotiated contracts was particularly high for the Wellington contracts. For more details, refer: Wallis IP. Value for money in procurement of urban bus services – competitive tendering versus negotiated contracts: recent New Zealand experience. Research in Transportation Economics 83, 2020.

Applying this model to a typical urban bus running 50,000 service kms pa at an average speed of 22 km/hr, the total costs would be approximately \$250,000 pa: this could also be expressed as an average cost of approximately \$5.00 per service km or \$110 per service hour.

We note that this bus cost model is essentially a financial (rather than economic) model, although there is little difference in this case: the model includes road user charges, licence fees etc on a comparable basis as for trucks of similar weight and axle configuration, so in effect the buses are paying their 'fair share' of the total costs of using the road system.

6.4.2 Financial assessment – allocated costs and charges (Wellington)

Based principally on information provided by GW for their 2018/19 bus operations, a database was established covering the following statistics (split between peak and off-peak periods)⁷⁸:

- Service km, service hr, maximum bus requirements
- Passenger boardings, passenger kilometres
- Fare revenues, Supergold revenues.⁷⁹

This database was applied along with our costing model (above) to undertake a financial analysis of the 2018/19 bus services, both in total and split between peak and off-peak periods. With this model formulation, the great majority of costs are able to be attributed uniquely to one or other of the two time periods: this applies to all the costs relating to service km and service hr plus that proportion of the bus-related costs corresponding to the buses in operation in the peak periods only. The remaining costs, relating to buses required for both peak and off-peak periods, accounted for some 12% of total costs⁸⁰.

Table 6.4 summarises the resulting performance statistics, split between peak and off-peak periods. On most performance measures, the peak statistics accounted for around 55% of the total, the off-peak for the remaining 45%. The cost recovery (fare revenues: operating costs) ratio is significantly higher in the peak periods (60% as against 52%), and the subsidy/boarding and subsidy/passenger km are significantly lower (by about 10%) in the peak periods.

⁷⁸ Peak period services were defined as those starting before 0900 and between 1500 and 1830 on weekdays; all other services were defined as off-peak (these definitions are consistent with those used for Supergold Card validity)

⁷⁹ 'Supergold' is the standard national scheme involving reduced fares for pensioners etc, with government essentially providing a separate subsidy to regional councils to cover the difference between full fares and these reduced fares. Throughout this paper we have treated the Supergold payments from government as an additional component of overall subsidies (rather than an additional component of passenger fare payments).

⁸⁰ For the purposes of this allocated cost analysis, these joint costs were allocated between peak and off-peak periods in proportion to the bus hours that they were estimated to operate in each of the periods. Note that this allocation is for illustrative purposes only: it should not be used for policy analysis purposes, as it does not reflect the incremental (avoidable) costs associated with changes to services in either peak or off-peak periods.

ltem	Units	Total	Peak	Off-peak
Boardings	mill	24.747	13.200	11.547
Pax km	mill	162.4	84.6	77.7
Fare revenues	\$ mill	42.20	4.24	17.96
Service hours	000	608.5	300.3	308.2
Service kms	000	14741	7085	7656
Allocated costs	\$ mill	74.93	40.64	34.30
Net subsidy	\$ mill	32.74	16.40	16.34
Revenue: cost ratio	%	56.3	59.7	52.4
Subsidy/boarding	\$	1.32	1.24	1.42
Subsidy/pax km	\$	0.202	0.194	0.210

6.4.3 Financial assessment – marginal cost (supply-based and demandbased) perspectives (Wellington)

Marginal (financial) costs for the Wellington bus services were assessed from two main perspectives:

- (A). *A supply-based perspective*: this assesses the gross cost impacts at the margin of increasing (or decreasing) bus service levels, in peak and/or off-peak periods.
- (B). *A demand-based perspective:* this assesses the service level impacts, the related cost and fare revenue impacts and any flow-on effects to existing users and usage resulting from exogenous changes in passenger demand (such as resulting from fuel price increases).

(A). Supply-based perspective. Applying the unit costs from our NZ Bus Cost Model (Section 6.4.1), the gross costs of marginal increases in the levels of bus service supply were estimated for peak and off-peak situations (and, by addition, for 'all day' services) at \$160/service hour for a typical peak period service (operating c1.5 service hours in each peak period) and \$90/service hour for off-peak services. The difference between the two cost rates reflects principally the bus capital charges associated with incremental peak period services.

(B). Demand-based perspective. This part of the assessment examined the expected service level and financial impacts to the authority (GW) in response to changes in demand (assumed at both peak and off-peak periods) resulting from some exogenous factor (such as fuel price changes). For illustrative purposes, a 10% increase in exogenous demand was assumed (but noting that our analysis results would be linear and symmetric for a corresponding decrease in demand⁸²).

⁸¹ Most of the data in this table is based on information supplied by GW. The allocated costs and the related performance ratios are based on the IWA costing model (outlined in Section 6.4.1). The revenue figures relate to passenger fare revenues only, i.e., excluding the government financial contribution in lieu of reduced fares for Supergold (pensioner etc) travel.

⁸² for illustrative purposes, we have assumed that the results for a reduction in demand would be symmetric with those for an increase in demand. In practice we note that reducing services in response to patronage reductions is often considerably more difficult (in the real world) than increasing services in response to patronage increases.

Key assumptions were:

- The authority response to the 10% exogenous demand increase would be an average increase of 8% in peak service frequencies and 3% in off-peak frequencies (these estimates are based on our broad assessment of current spare capacities across the network and likely responses to them).
- The increased frequencies would encourage some further increase in patronage through reducing bus waiting times and improving service frequencies – a patronage increase of around 2% (peak and off-peak) is estimated, which in turn might trigger further smaller increases in service frequencies.

The results indicate incremental costs of some \$5.6 million pa, an increase of some 7.5% on the current total annual (gross) costs of the region's bus services. The fare revenues from the 12% overall increase in patronage would be some \$5.5 million pa, almost matching the incremental costs: therefore, the net impact on subsidy requirements would be minimal. However, notably, the peak period subsidy would **increase** by about \$1.7 million pa, while the off-peak subsidy would **reduce** by \$1.6 million pa.

6.4.4 Economic assessment – marginal costs and charges (Wellington)

The financial costs to the operator associated with marginal increases in patronage (as addressed above) are an example of '**operator** (*financial*) economies of scale': in this case the (gross) marginal financial costs to the operator were less than the average costs of service supply, with the net marginal costs (i.e., marginal costs – marginal revenues) being close to zero.⁸³

This section focuses on the marginal **economic** costs associated with the marginal user, i.e., the net increase in (gross) operator costs less economic benefits (travel time etc) to existing passengers that would result from any increase in service levels to accommodate the marginal passenger. These **user economies of scale** are often known in the public transport sector as the **Mohring effect**. The benefit values to existing passengers may be categorised as a '**positive externality**', in the sense that they are not experienced by the marginal passenger but by other bus users benefiting from the presence of this passenger. ⁸⁴

These benefits to existing users associated with additional passengers are a simple function of: (i) initial headway, (ii) service frequency 'elasticity' in response to patronage changes, (iii) waiting time: headway factor, and (iv) value of travel time savings. In the case of the Wellington bus services, our estimates are that these benefit values to existing users (in aggregate) resulting from incremental passengers are typically around \$0.90 - \$1.40 per incremental passenger in peak periods, \$0.20 - \$0.40 in off-peak periods.⁸⁵

⁸³ In the example given, the net marginal costs were close to zero, but with substantial cross-subsidy from off-peak to peak periods.

⁸⁴ The analogy on the road system is the 'negative externality' associated with congestion, where the presence of the marginal road user results in congestion disbenefits to other road users.

⁸⁵ The higher values for peak than off-peak periods primarily reflect the difference between the two periods in initial headways and in service frequency elasticity estimates.

Chapter 7 Long-distance Coaches

7.1 Overview

This chapter covers the long-distance scheduled coach services in New Zealand. These services are operated on a fully-commercial basis and therefore the operational, market and financial statistics for the sector are not generally publicly available.

Our analyses have focused on the coach services provided by the Entrada Group (which trades under the names InterCity, Skip and Great Sights). These operations together provide the great majority of the scheduled long-distance coach services in NZ. In the year that the DTCC work was undertaken (2022) Entrada was the only scheduled long-distance coach service operating nationally. Entrada operated a reduced service throughout the Covid-19 period, with financial support from the government.

The information provided by the Entrada Group for this Study was provided on a 'commercial in confidence' basis. A Working Paper has been prepared but is not available for public release.

7.2 Operational and financial estimates

For the Entrada group services, passenger and revenue data was provided by the Group on a route-by-route basis for the 12 months ending in January 2020: this may be regarded as a 'normal' period for the business, as it pre-dates any impacts of the Covid-19 epidemic. Operating costs were estimated based on 2018/19 operating costs for typical coaches of the types used by the Group. Our estimates covered:

- Operational statistics including vehicle requirements, vehicle kilometres and vehicle hours per trip, trips per week etc.
- Market statistics including patronage (passenger boardings), passenger kilometres and fare revenues per trip.
- Operating cost estimates covering operating cost rates (per vehicle hour, vehicle km and peak vehicle), annual capital charges per vehicle, total costs and average costs.
- An estimate of overhead costs (sales, marketing, management).

Based on these inputs, we assessed Entrada's financial position (costs, revenues, net profit margin etc) on a route-by-route basis, and then aggregated these results to reflect the total annual statistics for the overall business.

We found, unsurprisingly, a considerable range of financial positions across different route groups. Some of these will be profitable: others appear to be loss-making on a stand-alone basis but potentially contributing to the overall company result by feeding passengers to more profitable routes. We found considerable seasonal variations in passenger levels and profitability on some routes, with significantly higher patronage generally in the summer months but with service levels being relatively constant throughout the year.

7.3 Overhead costs

Coach operating costs can be divided into direct running costs and overheads. Direct costs include fuel, wages, vehicle capital and maintenance costs. Overhead costs include reservations, sales and marketing (undertaken by Entrada Group) and supervision, administration and other overheads undertaken by the operating companies. The way

customers book and pay for travel has been revolutionised in recent years by the almostuniversal use of smart phones and the internet. This has enabled Entrada to close most of the group's travel centres and agencies. Entrada charges customers a fee for each booking through its on-line reservations system: this fee is set to cover the costs of reservations and sales and is not included in the reported revenue.

There also have been savings in supervision costs compared with the operations 15-20 years ago: where previously coaches would have been dispatched by a supervisor, waybills are now prepared and transmitted to drivers electronically; bus progress is tracked by GPS and can be monitored centrally, while communication with the driver is continuously available using mobile phone networks.

7.4 Marginal operator costs

It is generally considered that there are no substantial economies of scale in bus operations, including in the long-distance coach sector. Internationally there is a tendency for larger operators to dominate, which is also becoming apparent more recently in Australia and NZ: this suggests some modest scale economies.

We compared the direct cost per passenger-km between corridors and estimated a regression line. The slope of this line provided an estimate of the marginal costs. This was very close to but slightly below the overall average cost, which suggests some small natural monopoly effect. However, the biggest variations between marginal costs and average costs result from the uneven pattern of demand (seasonally and day-to-day). This means that, while the marginal cost per bus kilometre may be close to the average operating cost, the marginal cost per passenger kilometre typically drops to close to zero on winter mid-weekdays; and may also be very low over some route sections even in situations of overall high demand.

Chapter 8 Personal (for hire) Transport

8.1 Scope of chapter

This chapter covers:

- Taxi and ride-hail (car-based) services (with vehicle and driver) Section 8.2
- Micro-mobility (scooter-based) services Section 8.3.

It does not cover:

- Demand-responsive public bus services (as are currently being trialled in Timaru, Auckland and Wellington)
- 'Traditional' car/light vehicle hire services (generally vehicle only, without driver)
- Bus/coach hire services (typically vehicle and driver).

These three 'modes' are outside the scope of the Study.

8.2 Taxi and ride-hail services

8.2.1 Introduction

This section presents our analysis of the costs and economics of ride-hailing and taxi services in New Zealand:

- **Ride-hailing** refers to a service that links a rider to a driver through a technology platform, predominantly operated via a smartphone app; whereas
- **Taxi** refers to services operating under a taxi company that can be hailed off the street or dispatched by an operator.

Like many parts of the transport system, ride-hailing (particularly) and taxis are undergoing rapid change. Uber's entry into the New Zealand market in 2014 has led to rapid growth in the use of ride-hailing services and subsequent regulatory changes. Several ride-hailing companies are now active in the New Zealand market, which we estimate to be – at the time of writing (2020/21) – split approximately 50:50 between taxis and ride-hailing services.

8.2.2 Scope and methodology

This area of work focused on establishing an operating cost model for taxi and ride-hailing operations: while the model was primarily directed at estimating total costs and average costs for a range of scenarios, it may also be readily used for assessing marginal costs.

The work has not addressed accident costs relating to taxi and ride-hail operations. Very little evidence is available specific to taxi/ride-hail services on such costs: in the absence of such specific evidence, the work done in other DTCC work-streams relating to private cars will generally give the best (but not particularly good) guide to accident rates and associated costs applying to the taxi/ride-hail sector (refer to Section 4.13 of this report).

Our taxi and ride-hailing operating cost (TR-OC) model builds on the private car operating cost (PC-OC) model developed elsewhere in the Study. The TR-OC makes several changes to reflect the unique cost characteristics associated with delivering taxi and ride-hailing services. These changes involve both adjustments to the car cost model components as well as the addition of several additional cost components, specifically:

- Variable operating costs compared to the overall fleet makeup of private cars, we assume taxi and ride-hailing services make use of more modern vehicles that are more efficient with lower variable operating costs. This leads to different assumptions for petrol, oil, tyres, repairs and maintenance.
- *Fixed operating costs* we allow for additional costs associated with commercial use, such as fit-out, insurance, driver licensing (Passenger Endorsements), logbooks, insurance, ACC payments, annual vehicle licensing/registration and warrant/certificate of fitness certifications.
- *Fixed ownership costs (capital charges)* the use of more modern vehicles compared to the average car/light vehicle in the New Zealand fleet, along with a higher depreciation rate to account for commercial use (which involves increased mileage and wear and tear), results in higher capital charges on an annualised basis (but lower on a per kilometre basis).
- Labour / contracting costs we model the costs of payments to contractor-drivers, allowing for utilisation, dynamic (surge) pricing in situations of high demand (ride-hailing sector), and vehicle cleaning time. These components in total are estimated to yield an average hourly driver rate around the level of the national minimum wage.
- *Platform and licensing charges* representing the costs charged by ride-hailing and taxi companies to provide and/or license their platforms, including technology, marketing and profit margins.
- Additional consumer charges including the costs of airport charges (for both services) and electronic transactions (for taxi users).

Estimated costs per in-service kilometre are used to estimate the cost per trip and are factored by an occupancy rate to arrive at an overall rate per passenger-km.

In terms of aggregate supply and demand, we estimate there are approximately 3,250 taxis and 8,375 rideshare drivers operating in New Zealand, with varying levels of exclusivity to platforms. Based on an indicative mileage of 60,000 km/year for taxis and 30,000 km/year for ride-hailing, the services are estimated to account for 0.39% and 0.56% of total national VKT respectively, or together just under 1% of total VKT.

8.2.3 Results – average costs

Table 8.1 presents costs per kilometre for ride-hailing and taxi services vis-à-vis private cars, as estimated using the PC-OC and TR-OC models. Ride-hailing and taxis cost \$2.60 and \$3.23 per in-service vehicle km, respectively, compared to approximately \$0.70 for private cars: the great majority of this difference relates to the absence of driver payments for private car use. The results imply per kilometre operating costs of ride-hailing services are approximately 20% lower than taxis. Much of this cost difference stems from higher utilisation, which reduces the labour costs per in-service vehicle kilometre.

Based on an average occupancy of 1.56 passengers (excluding the driver) per trip (consistent with estimated average occupancy for NZ cars/light vans)⁸⁶ and an average trip length of 6.38km, we derive total per passenger trip costs of \$12.24 and \$15.20 for ride-hailing and taxis, respectively (NB: These figures include GST: for business-related travel, the GST component should be deducted from these numbers).

⁸⁶ The average occupancy rate for NZ cars/light vans is estimated from NZ HTS statistics (as adjusted by agreement with MoT) is 1.56.

Cost components		Car	RH	Taxi
1) Variable operating costs	Resource	\$0.26	\$0.28	\$0.28
	Duty	\$0.11	\$0.09	\$0.11
2) Fixed operating costs	Resource	\$0.08	\$0.08	\$0.04
	Duty	\$0.01	\$0.01	\$0.00
3) Fixed Ownership Charges		\$0.24	\$0.11	\$0.10
4) Labour/Contracting Costs			\$1.34	\$2.19
5) Platform and Licensing Costs			\$0.42	\$0.30
6) Additional Consumer Charges			\$0.28	\$0.20
Total Cost	per in-service veh-km	\$0.70	\$2.60	\$3.23
	per pass-km (inc GST)	\$0.44	\$1.92	\$2.38
	per pass-trip (inc GST)	\$2.86	\$12.24	\$15.20

Table 8.1: Costs per in-service vehicle-kilometre – Taxi and Ride-hailing services vis-à-vis Private Cars

8.2.4 Results – marginal costs

While our TR-OC cost model does not include a separate module for estimating marginal costs, the marginal costs likely to be of most interest are those relating to variations in vehicle utilisation (e.g., driver hours/year) and average speeds. The marginal costs for such changes may be readily estimated by pro rata adjustments to the variable operating cost figures and/or the labour/contracting cost figures in Table 8.1.

8.3 Micro-mobility

8.3.1 Overview

This section presents an analysis of the early experience with shared micro-mobility (scooterbased) services in New Zealand, with a primary focus on the costs of these services. The focus is on scooters defined as a "Powered Standing Scooter" for the purpose of the Society of Automotive Engineers definition and a "Powered Transport Device" under the NZTA Accessible Streets definition. These are powered by 300W motors, which typically allow average operational speeds of 7.5-10 km/hr, with a mean trip distance of around 1.3 km and trip time of around 10 minutes. They are provided via dockless shared schemes in urban zones, and accessed by a smartphone app.

Micro-mobility services are relatively new to New Zealand: the services have been undergoing rapid change and growth in demand since Lime's entry to the New Zealand market in Auckland in 2018. Several micro-mobility companies are now active in the New Zealand market, with schemes operating in Auckland, New Plymouth, Hamilton, Wellington, Christchurch, and Dunedin. User charges are typically based on a flag-fall plus a per minute charge, though certain companies also offer discounted subscription options. Rapid changes in industry structure, technological and operational characteristics, and business models through the DTCC Study period have complicated our analyses.

8.3.2 Shared Micro-mobility Operation and Cost Model

This cost model ('SM-OM') was developed to provide estimates of the costs of using shared scooter services on a per kilometre and per trip basis. It comprises four major cost components:

- *Fixed capital expenditure* which covers costs related to purchasing vehicles/parts and preparing them for deployment, with allowances for caps, vehicle churn, and repairability.
- Variable operational expenditure which covers variable costs associated with operating shared scooter services, such as distributing and recharging vehicles, checking and repairing vehicles, and new user promotions and marketing activities.
- *Fixed operating costs* which covers fixed costs required to run the business, including employees, general brand marketing, government relations and fees, legal expenses, insurance, technical development, vehicle, office and warehousing expenses.
- Taxes and profit which covers taxes, repayment of debt and a return to investors.

8.3.3 Model results

Our main results draw on trip distribution data provided by Auckland Council. In the initial 12month trial to November 2019, 1.78 million shared scooter trips were undertaken in the Auckland region, with an average trip distance of 1.3km, resulting in ~2.2 million person-km pa. This represents a mode share of 0.08% of trips and 0.01% of distance travelled in the Auckland region. The weighted average trip distance was 1.32km with a duration of 10.97 minutes, giving an average speed of 7.2km per hour. Based on a pricing structure of \$0.38 per minute plus an \$1.00 unlock fee, this yielded a weighted average charge of \$5.00 per trip, equating to \$3.79/km.

These charges are assumed to cover the rental, basic liability insurance, and payment processing fees, as well as customer support. Table 8.2 shows the main cost components as a proportion of the total and on a per kilometre basis.

Line Item	% of total cost	\$ per km	
1) Fixed Capital Expenditure	20.10%	\$0.76	
2) Variable Operational Expenditure	43.64%	\$1.65	
3) Fixed Operating Expenses	19.80%	\$0.75	
4a) Taxes	5.40%	\$0.21	
4b) Profit / Repayment of shareholders	11.00%	\$0.42	
5) TOTAL COST	100%	\$3.79	

Table 8.2: Shared mobility main results - cost components per kilometre to generate consumer charge

User charges varied from something over \$4.00 per km for very short trips down to \$3.00 per km for trips of around 5 per km. Actual user charges would vary depending on the average operating speed.

While the SM-Om model estimates the cost structure for shared micro-mobility as it existed in NZ in 2019, we expect technological innovations will progressively reduce costs and (given the competitive nature of the market) also user charges. Possible projections for future cost curves, in which we make assumptions on these innovations, were developed.

Similar studies in Paris, where the market is somewhat further developed than in NZ, have suggested the potential mode share for such devices may approach between 10% and 21% of all person km by 2030. We also understand that WK has been assessing scenarios for future micro-mobility mode shares (for both owned and shared devices) in the NZ context.

Chapter 9 Active Transport

9.1 Scope of chapter

This chapter covers the Study's consideration of what we have termed 'active' transport in NZ, under two headings:

- Walking and cycling (Section 9.2). These modes are considered together, as there is a large degree of commonality between them in terms of (i) assessment of the facilities and costs involved in their provision; and (ii) their effects, in terms of health impacts and environmental impacts.
- Health impacts (Section 9.3). This section addresses the health impacts (for both individuals and for the public health system) of the increases in physical activity associated with active travel modes (principally walking and cycling) compared with more sedentary modes of person travel (principally cars).

9.2 Walking and cycling

9.2.1 Overview

Walking and (e)-cycling play an essential role in New Zealand's transport system. Like many other parts of the transport system considered in this report, walking and (particularly) cycling are undergoing a period of rapid change – driven by a potent combination of emerging technologies, such as electric bicycles, and evolving policy, particularly relating to the reduction of GHG emissions from the transport sector. In their recent report, for example, He Pou a Rangi Climate Change Commission recommended increasing per capita use of walking and cycling nationally by 25% and 95% respectively, as contributions to reducing NZ's carbon emissions. For these reasons, the DTCC Study presents a somewhat rare and timely opportunity to investigate the financial and economic costs of walking and cycling in the New Zealand context.

This section focuses primarily on the direct costs of walking and cycling to government and users. By direct costs, we are referring to: (i) infrastructure costs incurred by government; and (ii) user costs, comprising time costs for both walking and cycling, and cycle operating costs for cycle users (walking operating costs are assumed to be negligible). The following section (9.3) then addresses the benefits of walking and cycling (relative to other modes) and associated social costs, in particular assessing the health-related benefits.

Our work on this topic has been constrained by: (i) the limitations of data on demand for walking and cycling, which are particularly significant given the recent/ongoing growth in cycling; and (ii) the lack of comprehensive spatial data on walking and cycling infrastructure and its costs. We have developed a cost model which may be used to understand the sensitivity of our results to the key assumptions and uncertainties.

9.2.2 Costing approach

We estimated the direct costs of walking and cycling as the sum of the following four components:

- Land costs, i.e., the estimated cost of land within the road corridor (or elsewhere) that is used exclusively (or primarily) to accommodate walking and cycling infrastructure;
- Capital costs, i.e., the estimated costs of constructing and maintaining walking and cycling infrastructure in the road corridor (or elsewhere);

- Operational costs, i.e., the costs to bicycle owners of purchasing and operating bicycles (apart from time costs); we also assume walking incurs zero operational costs to users); and
- User time costs, i.e. the economic costs of time spent on walking and cycling travel (based on 'standard' behavioural values of travel time).

Land costs were estimated as the product of:

- The physical length of the walking and cycling network(s). For dedicated cycle lanes, this data is readily available from WK. For walking, we estimated the length of footpaths as a function of the length of the urban road network; and
- The typical physical width of cycle lanes and paths; and.
- Typical land prices (per square metre) in urban areas.

Infrastructure capital costs were estimated based on typical costs for replacing existing infrastructure (rather than providing new infrastructure). These costs were then expressed as an annualised amount, allowing for capital depreciation (or facility maintenance) and a cost of capital (4% pa in real terms).

Operational costs (cycling) comprise two elements:

- o the capital costs of bicycle/e-bike purchase, annualised over typical bicycle lives; and
- operating and maintenance costs, based on case study information and allowing for additional electricity and maintenance costs for e-bikes.

User time costs were estimated as the product of:

- estimates of the total travel time (hours per year) spent walking and cycling (based on NZ HTS data);
- unit values (per hour) of work time, commuting time and other non-work time, as adopted by Waka Kotahi for economic evaluation purposes (refer MBCM, adjusted to 2018/19 prices); and
- calculation of annual economic costs for walking and cycling, split between working time and other time.

The resulting costs were then normalised as appropriate, to provide results on an average cost per person km and person hr basis.

9.2.3 Total cost results

Total costs to government

Direct economic costs to government totalled \$1.50 billion pa, with land costs comprising 84% and capital costs 16%. 89% of this total related to footpaths, 11% to cycle-paths. 96% related to paths within urban areas, only 4% to non-urban areas.

Average user costs

Table 9.1 shows the average direct economic costs (to government plus users) associated with use of walking and cycling facilities. In each case, the user costs are estimated at 3.4c/km for unpowered cycles (including an allowance for cycle purchase costs), close to zero for walking.

Location	Costs	Walk	Cycle
Urban	Government	\$2.09	\$0.56
	User	-	\$0.34
	Total	\$2.09	\$0.90
Rural	Government	\$1.14	\$0.68
	User	-	\$0.34
	Total	\$1.14	\$1.02

Table 9.1: Average direct economic costs per person kilometre travelled

From the walker/cyclist perspective, estimates need to be added for time costs – based on typical average speeds of 5 km/hr for walking and 15 km/hr for cycling as default speeds, and MBCM behavioural values of time (adjusted to 2018/19 values).

Walking/cycling also provides significant health benefits relative to the use of other (more sedentary) modes. These are estimated in the next section (9.3) of this chapter.

9.2.4 Marginal costs

The cycle operational and maintenance marginal costs and the user time costs are taken to be equal, in general, to the average costs for these components. The walking marginal costs are taken as zero, apart from the user time costs, which would be estimated based on the relevant MBCM unit rates (as above).

In addition, it would usually be assumed that public sector marginal costs relating to land and infrastructure would be zero: this would generally be a good approximation in the short/medium term, while longer term scenarios involving the provision of substantial additional capacity would need to be considered in more detail, involving initial feasibility and costing assessments.

9.2.5 Comment on land valuation

A significant discrepancy has been identified between the unit land valuations used in this section for walking/cycling and the unit valuations used (by WK) for valuation of the road infrastructure, in particular the local road valuations (refer Section 4.2 of this report). The unit values used by WK are very much lower than those used here.

Given that the land values in this section represent 84% of the direct economic costs to government associated with walking and cycling infrastructure, we undertook various sensitivity tests on our results.

We suggest that investigation of this apparent discrepancy should be given high priority in any follow-on work to DTCC.

9.3 Health impacts of active transport

9.3.1 Overview

This section addresses the health benefits (to both individuals and the health system) of increases in physical activity associated with greater use of 'active' travel modes (principally walking and cycling) in preference to more sedentary modes (principally cars). It focuses on

public health impacts associated with physical activity, while noting that air pollution and injuryrelated costs are covered elsewhere in this report.

Transport affects public health through multiple pathways including through road traffic crashes, air pollution, noise and physical activity. These pathways impact a wide range of health outcomes – including injury, type 2 diabetes, respiratory diseases, cardiovascular diseases, selected cancers and mental health. The wide range of health impacts of transport results in costs to individuals, government and wider society. Estimates of the costs associated with the public health impacts are important to consider in assessments of the costs associated with the transport system and its use.

The 'base case' for our assessment has been taken as travel by means that involves no or minimal physical activity (often taken as travel by car). Our assessment compares the health-related economic cost savings (benefits) of using other (more active) transport modes with the 'base case' economic costs.

9.3.2 Methodology

An established multi-state life table model was applied to estimate the health impacts and health system savings associated with different transport modes. As the focus was on physical activity, it was not appropriate to make assumptions about physical activity forgone by the use of physically inactive transport modes: rather, the assessment only considered modes that would involve some physical activity and thus result in an increase in overall physical activity. The values derived are therefore more accurately described as benefits (economic cost savings) resulting from an increase in physical activity, rather than economic costs associated with reduced physical activity.

A probabilistic sampling framework was developed to run through thousands of different transport scenarios and estimate the individual health benefits (cost savings) and public health system cost impacts of each scenario. The results from scenario modelling were used to derive average physical activity-related health cost savings (or benefits) associated with different modes of transport on a per person kilometre basis. Estimates for modes not explicitly considered in the model (e.g., e-bikes, scooters, public transport) were obtained by scaling results from modelled modes, where there was evidence that these other modes resulted in changes in physical activity. For all modes covered, cost savings (benefits) were separated into direct costs savings to the health system, and individual socio-economic benefits associated with individual level changes in health status. The latter was based on using a Value of a Statistical Life (VoSL) approach to value a Quality-Adjusted Life Year (QALY). The Ministry of Transport VoSL for 2018 (\$4.34 million) was applied, consistent with the 2018/19 base year of the analysis.

9.3.3 Results and application

It was estimated that walking results in 0.013 QALYs gained per 1,000km walked (relative to car travel), and cycling is associated with approximately half this health gain of walking per km travelled. Differences in the health gains across different modes represent differences in the effort required to travel by different modes (and therefore the amount of physical activity that is involved per kilometre travelled). Results reflect the total health gains, the health-related benefits to individuals per kilometre of walking were estimated at \$2.73 and per kilometre of cycling at \$1.51 (with 4% discount rate applied).

In addition to these benefits to the individuals concerned, travelling by active modes of transport, or modes that are associated with active travel, would result in cost-savings to the health system. Increased physical activity that results from active transport results in reduced incidence of non-communicable diseases (e.g., cardiovascular disease, selected cancers). This in turn results in savings to the healthcare system, even after accounting for increases in costs associated with increased longevity. Active travel involving walking or cycling results in net health system cost savings of \$0.155 per kilometre walked and savings of \$0.088 per kilometre cycled: these figures are additional to the above values representing the socio-economic health benefits of walking and cycling to participants.

Taken together, these figures represent a reduction in economic costs (or a net economic benefit) to society of **\$2.885 per km walked or \$1.598 per km cycled**⁸⁷, relative to no travel or to travel by car or other modes which do not involve significant physical activity.

Based on HTS estimates of the amount of walking and cycling undertaken in NZ on an annual basis, our assessment of the economic benefits associated with current walking and cycling (relative to use of sedentary modes) is:

- Walking: 655.5 million person km * \$2.885/km = \$1,891.1 mill pa.
- Cycling: 289.2 million person km * \$1.598/km = \$462.1 mill pa.
- Total economic benefit = \$2,353.2 mill pa.

As an illustrated application of the above benefit rates, the potential health-related benefits were assessed if 1.0% of current NZ person kilometres of car travel were to switch to active modes, with 75% of these switching to walking and 25% to cycling (giving a weighted average benefit of \$2.563 per person km).

Given the total NZ car/light vehicle travel of 35.7 billion vehicle km pa at an average car occupancy of 1.56 persons (giving a total of 55.7 billion person km pa), a 1.0% modal switch would represent 557 million person kilometres pa. At the weighted average benefit rate (\$2.563/person km), the annual economic health benefits would be valued at \$1,427 million pa: this is a substantial amount relative to most of the other cost and benefit estimates derived elsewhere in this Study. Of course, in overall transport economic terms, these health benefits will typically be partially (or totally) offset by increased travel times, which are not addressed here – although such increases seem likely to be minimised (in urban areas in particular) through the use of e-bikes.

⁸⁷ This rate for cycling is based on unpowered cycles. The extent of physical effort required per kilometre is rather lower for e-bikes, but this is largely (or completely) compensated for by the typical increase in annual cycle kilometres per person for people switching from unpowered cycles to e-bikes.

Chapter 10 Coastal Shipping

10.1 Scope of chapter

This chapter covers the NZ coastal shipping 'sector', in two main sections:

- Domestic sea freight (Section 10.2)
- Cook Strait ferry services which provide for both passenger and freight movements (Section 10.3).

A further Section (10.4) provides brief comments on maritime accidents associated with the sector and on the sector's environmental impacts (which are set out in more detail, including comparisons with other domestic transport 'modes', in chapter 11).

10.2 Domestic sea freight

10.2.1 Scope

Coastal shipping is a niche provider in the NZ domestic freight (and passenger) market. This section examines the costs and charges associated with providing shipping capacity to NZ's key coastal shipping freight markets: cement (dry bulk), petroleum (liquid bulk) and containers.

Coastal and international trade is focussed on 8 key commercial ports. The largest, Tauranga, serves 25% of all cargo ship visits, 31% of NZ's international trade, and 43% of the container trade. The coastal shipping sector operates on a fully commercial basis. Shipping capacity is provided by competing private domestic and foreign operators, while ports are commercial enterprises run by local authorities.

NZ's domestic cargo-carrying capability is provided by 7 domestic ships and numerous foreign ships, all of which nominally compete against road and rail.

10.2.2 Market overview

Coastal shipping carried an estimated 5.2 million tonnes ("mt") of cargo in 2018/19, representing less than 2% of the domestic freight task. Its market share in terms of tonne kms (4.7 billion ntk) is much greater, at 13.2%, reflecting its relatively long average haul length (890 km)⁸⁸.

The 5.2 mt coastal shipping freight task is made up of 2.5 mt petroleum products (liquid bulk), 1.1 mt cement (dry bulk), 0.25 mt of various other bulk cargos (break, dry and liquid) and an estimated 1.1 mt of containerised cargoes.

Container ships carried 270,000 TEU of domestic containers along the NZ coast in 2019, in addition to 169,000 TEU of transhipments⁸⁹. 129,000 TEU of those domestic containers (48%) were loaded, with an estimated cargo weight of 1.1 million tonnes (assuming 8.9t/TEU, as derived from imported containers). Transhipment containers, 95% being full, accounted for an additional estimated 1.56 mt. The coastal shipping of containers (domestic and transhipment) competes directly with long-haul road and rail transport. The sole domestic container ship at the

⁸⁸ Based on National Freight Demand Study 2017/18 ("NFDS"), adjusted for 2018/19 data

⁸⁹ Derived from Freight Information Gathering System ("FIGS") database

time of the Study (the *Moana Chief*) directly contests the coastal container trade with foreign ships – and has achieved a 25% market share of this trade.

NZ ports served over 7000 ship visits in 2018/19, with the 8 key ports handling 83% of the 5500 cargo ship visits. Container ships accounted for 55% of those visits, bulk ships almost 30%, while tankers and vehicle ships shared the balance. This ship traffic is primarily serving international trade, with domestic coastal cargo accounting for less than 10% of the total handled by NZ ports. 410,000 TEU domestic containers were moved along the coast, each being handled by both a loading and a discharge port and representing 25% of port throughput.

Coastal shipping competes most effectively in the long-haul domestic freight market, with its average haul distance of 890km being materially higher than rail at 230km and road at 90km (NFDS). The national distribution of just two commodities, petroleum and cement, accounts for 75% of the coastal shipping task, with each forming part of vertically integrated (uncontested) supply chains. At the time of the Study, COLL operated two dedicated ships distributing 2.5 million tonnes of petroleum from the Marsden Point refinery to all NZ ports⁹⁰. Similarly, two competing cement suppliers (Golden Bay Cement and Holcim) collectively distribute 1.4 million tonnes of cement⁹¹ from Whangārei and Timaru respectively on their own ships. All other bulk cargo amounts to less than 5% of the coastal shipping freight task, while containers make up the remaining 20%.

A changing market environment has seen the decline of domestic shipping over many years. Step changes have arisen from key events. These included the establishment of the Cook Strait RORO ferries in 1962 (refer Section 10.3), which absorbed most inter-island traffic; while the Maritime Transport Act 1994 allowed foreign ships to carry domestic cargo, which quickly captured a major part of the rapidly-growing container trade.

Domestic ships operate at significant disadvantage to global players. First, the small coastal freight market denies domestic operators the scale economies able to be achieved by global shipping operators, which are also able to utilise available ship capacity to carry domestic cargo at minimal marginal cost. Second, bunkers (ship fuel) cost 30% more in NZ than in global markets⁹², a material disadvantage to domestic ships given bunkers account for about 40% of total ship operating costs⁹³. Third, domestic ships must pay the NZ Emissions Trading Scheme (ETS) levies on bunkers (adding a 15% premium) whereas foreign ships are exempt⁹⁴. Additionally, most components of ship operating costs are higher in NZ: crewing costs are up to triple the level of global seafarers (higher salaries, more shore leave); consumables and maintenance are broadly double; and, in the absence of suitable facilities in NZ, domestic ships must travel far for dry-dock inspections.

10.2.3 Total cost assessment

Our analysis has been based primarily on comprehensive official datasets, notably the Ministry of Transport's National Freight Demand Study 2019 ("NFDS") and its Freight Information Gathering System ("FIGS") database. Publications and datasets from Statistics NZ and key industry stakeholders such as NZ ports added considerable detail. Shipping is a competitive and volatile sector, with limited formal information available on costs and prices: accordingly, we

⁹⁰ FIGS data. This service ceased with the closure of the refinery (2022)

⁹¹ Derived principally from Golden Bay Cement and Holcim announcements

⁹² Bunkerworld and personal comments by Z-Energy

⁹³ Drewry Ship Operating Costs Annual Review and Forecast 2019/20 ("Drewry")

⁹⁴ United Nations Kyoto Protocol 2005 and International Maritime Organization MARPOL Convention

have relied on respected international studies, notably Drewry's Ship Operating Cost Review 2018/19 and ASX Marine's Alphaliner database. With kind inputs from key NZ stakeholders, these global insights and local knowledge have been adjusted to better reflect the domestic shipping sector, allowing for both its smaller ship sizes and its higher domestic cost structures.

The two key domestic coastal bulk trades, petroleum and cement, are part of uncontested integrated supply chains, with little insight being available into the breakdown of cost components (raw materials, manufacturing, distribution etc) of the final product. Containers in contrast represent the key contestable coastal trade, with their shipping costs being a more discrete, identifiable component. Accordingly, containers are the focus of our financial modelling, which has then been extended to the bulk trades.

Ship-related costs comprise capital costs (the ship itself), ship operating costs (including labour) and bunker costs (fuel for the journey). Port charges are divided between 'wet' charges (levied on the ship) and 'dry' charges (levied on any cargo loaded or discharged). Drewry assesses ship costs across a range of ship types and sizes (most often larger than those operating in NZ), with scale economies apparent for larger ships. Similarly, port wet charges reflected scale economies on ship size, although dry charges were fixed according to cargo type (for containers: TEU or FEU, full or empty, dry or reefer). Informed assumptions were made to allocate the known cargo mix to the various ships and routes, so allowing for ship costs to be unitised as \$/tonne or \$/TEU. Domestic ships need to recover their costs solely over the coastal cargo they carry, whereas foreign cargo ships (principally container ships) can spread the costs of core import and export cargoes by choosing to carry coastal cargo.

The total costs (including normal profit margins) associated with the 2018/19 coastal shipping domestic transport task (5.2 million tonnes, 4.7 billion ntk, as above) were some \$225 million pa. This equates to an average of approximately \$45/tonne (or 4.1c/ntk) for containerised freight, \$40/tonne (or 6.4c/ntk) for dry bulk freight (such as cement) and \$45/tonne (or 4.5c/ntk) for liquid bulk freight (such as petroleum).

10.2.4 Marginal cost assessment

For an industry where capacity can only be added in relatively large increments, it is difficult to provide a single measure of marginal cost that is useful for policy makers. Both ship owners and ports operate with a degree of slack so as to provide flexibility to meet varying customer requirements and to have the ability to absorb delays due to weather and unexpected events. Thus, in the very short run, there is generally some spare ship, infrastructure and port worker capacity on the New Zealand coast. As a consequence, the marginal cost in the strictest sense is often close to zero (this is also likely to be the case for other modes of transport). However, for the policy maker, if we simply report that there is spare capacity at the margin in ships and trains so the marginal cost in each case is close to zero, this may be interesting but is unhelpful. Of greater interest is an assessment of what increment in demand may necessitate investment to add capacity, and so increase marginal costs in the longer run.

When considering issues relating to the relaxation of the cabotage constraints, we could consider the carriage of domestic containers as the marginal activity. In this case we could assume that the foreign ship itinerary is fixed by the need to service its international cargo. The incremental cost of handling domestic containers comprises the direct port costs and the in-port costs of ships transferring cargo. Per container, the latter increase with ship size. The marginal cost is estimated to be \$120 per TEU per port or \$240 in total for both domestic and international ships, of which around \$220 is port handling costs and \$20 is ship costs.

However foreign shipping has (in theory at least) the option of making a single NZ port call and aggregating/dispersing cargo by land transport, in which case the entire coastal operation becomes a marginal activity. Viewed in this light, the appropriate cost to use would include the steaming cost for foreign ships on the NZ coast. This increases the marginal cost by 3.5 cents/TEU-km and 0.9 cents/TEU-km for domestic and international ships respectively. This is an additional \$50 for the *Moana Chief* or \$25 for a 4,000 TEU international vessel between Auckland and Lyttelton. If we calculate the costs on this basis, this will be more helpful in the context of addressing policy decisions such as "should we invest in port facilities to handle international cargo at Napier?".

The ports also appear to have spare capacity, but this is not so significant when we compare the utilisation with the industry norm of 60% utilisation, above which risks of ship delays put pressure on ports to increase capacity. This is because there is a marginal (externality) cost associated with port calls, since one ship taking longer to load/unload due to the marginal container potentially delays subsequent port users. This cost depends on the utilisation of the current infrastructure and is estimated to be as high as \$5 per TEU for Auckland and as low as \$1.50 per TEU for Wellington.

The long run marginal port cost will include the capital costs of additional cranes, berths and other infrastructure. Based on expected capital costs and likely utilisation, this is estimated to be \$4 per TEU for new berths and \$4.50 per TEU for additional cranes. Port capacity should be expanded if this cost is less than the marginal cost derived above. We estimate that this will be the case if either crane utilisation exceeds 50% or berth utilisation exceeds 45% of nominal capacity. This compares with the industry norm of 60% of capacity.

10.3 Cook strait ferry services

10.3.1 Overview

The Cook Strait ferry services form a vital part of New Zealand's transport infrastructure, providing a (generally-) reliable "land bridge" between North and South Islands for passengers, cars, commercial vehicles and trains. At the time of the Study, two operators, state-owned KiwiRail and private StraitNZ, collectively operated 5 ROPAX ferries⁹⁵ providing 6300 one-way sailings annually.

10.3.2 Methodology and information sources

Our analyses of the Cook Strait ferry services have been informed by public data sources, with cost estimates based largely on international proxies.

KiwiRail's Annual Reports and website provide complete, although high level, operational and financial information for their "Interislander" ferry operations.

StraitNZ, owner of "Bluebridge", is a private company and not required to publicly disclose any commercial data: it declined to provide information or commentary for the Study. We have relied principally on media statements reviewing a sales flyer from StraitNZ's then-owner, CPE Capital.

As part of the Study, Rockpoint (the DTCC consultant on shipping aspects) had access to the Ministry of Transport's subscription to Drewry's "Ship Operating Costs Annual Review and Forecast 2019/20" ("Drewry") which provides a detailed global cost breakdown for most

⁹⁵ The number of ferries operated has since increased to 6 (except in cases of breakdowns, extreme weather conditions etc

commercial ship categories, including RORO. Rockpoint also subscribes to ASXMarine's Alphaliner shipping database for information on fleets, schedules, and ship pricing.

Public sources and websites where available were utilised extensively including NZ government agencies (MoT, MNZ, Treasury, StatsNZ and WK), global agencies (such as IMO, WTO, IEA), and sites providing databases, commentary and monitoring of world shipping and bunker pricing.

10.3.3 Current operations

In a global context, the current Cook Strait Roll-on Roll-Off Passenger (ROPAX) ferries are considered mid-sized, and at average 21 years, relatively old. Since KiwiRail (then NZ Rail Department) established its Interislander ROPAX operations in 1962, the role of pre-existing coastal shipping on the Cook Strait route was largely supplanted. Interislander first faced Cook Strait competition in 1992 when StraitNZ introduced first a small livestock carrier, then a series of non-passenger RORO ships from 1995, before initiating direct ROPAX competition in 2002, with the launching of its 'Bluebridge' brand. Bluebridge now claims 56% of the key commercial vehicle market on the route.

Wellington (CentrePort) and Picton (Port Marlborough) provide port terminals to the two ferry operators. CentrePort's Kaiwharawhara terminal was established in 1962, serving Interislander. A new terminal at Glasgow Wharf was built to serve Bluebridge. Port Marlborough similarly provides separate terminals for the two ferry operators.

The ports collectively report 6300 one-way sailings annually, with Interislander providing 3700 sailings, and Bluebridge 2600. Sailing schedules are adjusted slightly to reflect seasonal demand patterns, with extra sailings over the peak summer season, and maintenance scheduled for off-peak times of year. These schedules allocate 3.5 hours to each sailing, implying a transit speed of 16-20 knots, with 2 hours' turnaround time. This indicates ship utilisation at a creditable 79% (the balance allows for repairs and maintenance, downtime and surveys, scheduled during off-peak times of the year).

The ferry operators' booking websites provide an insight into pricing. Competition keeps prices closely aligned.

10.3.4 Financial assessment

Both Interislander and Bluebridge operate booking websites from which passenger, car and small truck rates can be derived. While neither disclose pricing for larger commercial vehicles, these can be deduced by deducting car and passenger revenue from total revenues, to calculate an approximate charge per lane-m occupied. Our analysis suggests Interislander generates \$60m pa from commercial vehicles (being 44% of third-party revenues), at a calculated rate of \$50/lane-m. We assume rail wagons are charged at a small premium, so nominally \$60/lane-m, to generate \$34 million of related-party revenues for KiwiRail.

Bluebridge has steadily gained market share in commercial vehicles (from 47% to a claimed 56%) over the last decade. Given ship schedules are similar, we assume StraitNZ prices at a modest discount to Interislander – we have assumed \$45/lane-m for commercial vehicles – and would account for \$69m (67%) of its revenues. Total Bluebridge revenues were \$102m in 2019, and \$120m when projecting forward to 2021 (implying that StraitNZ's non-ferry operations generate the balance of the \$175m total cited in CPE's StraitNZ sales flyer).

Drewry's 2019 Ship Operating Cost review provides the core data for our cost analysis. This confirms that manning accounts for 50-55% of ship operating costs (excluding bunkers). As

highlighted earlier (Section 10.2), costs applying in NZ are materially higher than prevailing prices internationally, with manning 2.1 times global rates, and overall 1.6 times. Bunkering, which accounts for half the total cost of deploying a ship (ship operating costs plus bunkers), costs around 1.5 times the prices available in Asia.

Capital charges reflect the costs of owning and financing long-term assets over their lifetime. KiwiRail's annual reports disclose Book Value and Depreciation for its ships, the key (but not only) assets of the Interislander. Bluebridge has made no public disclosures on the values of its ships, although in early 2015 the vendor of *Strait Feronia* recorded its sale price (to Bluebridge) as EUR23m (NZ\$35m).

While NZ ports are required to publish annual accounts and their tariffs, no public information was available on ferry terminal charges. The infrastructure provided is largely owned by the ports, although KiwiRail does own some land and buildings in Wellington.

10.3.5 Conclusions

Our financial summary (refer Table 10.1 provides our best estimates, albeit all based on incomplete data. Operational data drives our revenue calculations, while costs cover the ship operating, ship non-operating, bunker, port and capital costs. Our modelling estimates a 2019 operating profit (EBITDA) of \$49m for Interislander and \$33m for Bluebridge.

Cook Strait Ferries - Operating Earnings - NZSm				
		Interislander		Bluebridge
Operational Inputs	\$/unit		\$/unit	
Passengers million	55	0.83	55	0.34
Cars million	115	0.26	120	0.11
Large Trucks lane-m million	50	1.20	45	1.53
Rail lane-m million	60	0.56	0	0
Revenues \$million	share		share	
Passengers	33%	45	18%	19
Cars	22%	30	13%	14
Large Trucks	44%	60	67%	69
Other (unknown)	2%	2	1%	<u>1</u>
Total Third Party		138		102
Rail (Related Party)		<u>34</u>		0
Total Revenue		171		102
Ship Operating Costs		22		11
Ship Non-Operating Costs		21		16
Bunker Costs		24		16
Capital, Port & Other Costs \$m		55		32
Total Ferry Expenses		122		69
Operating Earnings (EBITDA)		49		33

Cook Strait Ferries - Operating Earnings - NZŞm

KiwiRail's financial statements reveal that it depreciates its ships on a straight line (historic cost) basis over 20 years, consistent with the typical observed lifespan of commercial ships. As at June 2019, the Net Book Value for its ships stood at \$136m (\$256m original cost less \$120m

⁹⁶ The Interislander Rail (related party) revenue of \$34 million is also included in the rail analyses but eliminated from ferry revenue by KR in its consolidated accounts.

accumulated depreciation), with an annual depreciation charge of \$31m. With the KiwiRail ferries averaging 21 years old, reliability has become an issue (*Kaiarahi* is currently out of commission with a "catastrophically" damaged gearbox), diminishing the fleet's economic value. When KiwiRail's new ROPAX ferries arrive in 2025, Interislander's existing fleet will have minimal residual market value.

The Cook Strait ferry operations will be transformed following KiwiRail's disclosure of a government-approved \$1.45 billion ferry investment programme, which comprises two new larger ROPAX ferries (\$551 million) due in 2025/26, coinciding with the redevelopment of both Kaiwharawhara and Waitohi ferry terminals and infrastructure required to accommodate the new ferries. Bluebridge will share the Kaiwharawhara terminal while it is expected to continue using its existing Picton facilities.

Competition between the two Cook Strait ferry operators is expected to remain strong, with prospects of other ship operators (such as Move Logistics) providing additional shipping links between the North and South Islands.

While existing public data has proved adequate for this initial analysis, commercial considerations seem likely to continue to discourage competing Cook Strait ferry operators from providing additional data in the foreseeable future.

10.4 Maritime accident and environmental aspects

10.4.1 Maritime accident summary

Data on maritime and port accidents and incidents in NZ is collected by Maritime NZ (for accidents at sea) and by each of the port authorities (for accidents within port areas). Details are given in WP C14: Coastal Shipping (Appendix G).

Accident rates for the ports/maritime sector appear to be low relative to those in other parts of the domestic transport sector, although noting that there are considerable difficulties in making inter-modal comparisons. For example, in recent years the port-based accident rates for the NZ coastal and pax/non-pax maritime sub-sectors (which are the most relevant to the scope of this chapter) have averaged 3-4 fatalities and some 45 lost time injuries per year.

10.4.2 Environmental impacts of the maritime sector

These are summarised in Chapter 11, in a form that facilitates comparisons across the various domestic transport sub-sectors.

Chapter 11 Environmental Impacts

11.1 Scope of chapter

This chapter provides our absolute and comparative appraisal of the environmental impacts of the domestic transport modes covered in the Study, in three main sections:

- Local and global (GHG) emissions Section 11.2
- Noise impacts Section 11.3
- Impacts on biodiversity and Biosecurity Section 11.4.

11.2 Local and global emissions

11.2.1 Air pollutants associated with domestic transport emissions – overview

The domestic transport sector generates air emissions, principally through the combustion of fossil fuels. These emissions are typically split into air quality pollutants (which impact locally) and greenhouse gas emissions (which impact globally).

A summary of these pollutants and their features is given in Table 11.1.

- *Air quality pollutants* cause adverse human health effects, ranging from increased morbidity (illness and disease) to increased mortality (loss of life). The effects depend on the pollutant, its concentration and the length of exposure they may be either acute (short-term) or chronic (long-term).
- **Greenhouse gases (GHGs)** are so-called because they contribute to global warming and climate change. GHGs can be short-lived, with an atmospheric lifetime from days to 15 years (e.g., BC and CH₄), or long-lived with typical lifetimes of more than 100 years (e.g., CO₂). For ease of comparison, GHGs are typically expressed as CO₂ equivalents (CO₂e), which is the amount of CO₂ which would have the equivalent global warming impact over 100 years.

11.2.2 Assessment approach

This section provides a brief overview of the four main steps involved in the estimation and valuation of air quality and greenhouse gas emissions.

Approach adopted

One of two approaches is commonly adopted in estimating emissions – a 'bottom-up' approach (i.e., where emissions are estimated locally and then aggregated to regional and national totals) or a 'top-down' approach (i.e., where emissions are estimated nationally and disaggregated to local levels by pro-rating by population or some other relative activity indicator). For this Study, given data limitations, we estimated emissions for some sectors by 'bottom-up' methods (e.g., road transport exhaust emissions) but mostly relied on 'top-down' methods with regional or urban/rural splits made on the basis of local activity information.

Pollutant	Features
Air quality pollutants:	
Particulate matter (PM)	*Particulate matter (smaller than 10µm or 2.5µm) – results primarily from diesel fuel combustion, brake/tyre wear and road dust.
Nitrogen oxides (NO _x)	*Emitted primarily from diesel and petrol fuel combustion, with nitrogen dioxide (NO ₂) the pollutant of most concern.
Sulphur dioxide (SO2)	*Previously (until 2009) a primary source was the sulphur level in motor diesel, but this has now been reduced to very low levels. Still associated with combustion of marine transport fuels (but principally coastal freighters rather than local ferries).
Volatile organic compounds (VOC)	*Result from evaporation of fuel in engines and re-fuelling systems as well as fuel combustion.
Carbon monoxide (CO)	*Associated with incomplete combustion of petrol. Now a lesser concern as most petrol vehicles are fitted with catalytic converters.
Greenhouse gases (GHG):	
Carbon dioxide (CO ₂)	*Released from combustion of all fossil fuels (especially mineral-based petrol and diesel). Combustion of renewable fuels also produces CO2, but the net effect is considered zero as the CO ₂ is then recaptured in the production of the renewable fuels.
Methane (CH ₄)	*Commonly associated with incomplete combustion and fuel system leaks in natural gas-fuelled vehicles
Nitrous oxide (N ₂ O)	*Also associated with fossil fuel consumption. Note – different from NO ₂ , an air quality pollutant.
Black carbon (BC)	*Essentially fine particulate matter (PM2.5 and smaller), which is produced primarily from diesel combustion.

Table 11.1: Summary	v of local air qualit	v pollutants and climate	e pollutants (greenhous	e dases)
	y or roour an quan	y ponatanto ana omnat		o guoco,

11.2.2.2 Key data sources

In most cases our analyses relied on national-level transport fleet composition, fuel use and activity data reported by various agencies. For example:

- 2019 New Zealand Vehicle Fleet Statistics (MoT 2020) for national vehicle kilometres travelled (VKT) data
- Air traffic movement⁹⁷ to March 2020 (Airways Ltd 2020) for domestic aircraft movements by airport
- Performance of public transport services (NZTA 2020) for activity rates for all modes of urban public transport (bus, rail and ferry) by region.

We used emissions factors from New Zealand sources where possible, supplemented with factors that are relevant to the New Zealand transport fleet from internationally published databases.

We also cross-checked our final estimates for consistency with those reported in:

⁹⁷ While domestic aviation is generally out of scope of this Study, aviation data for establishing emissions and noise impacts has been collected and reported for completeness.

- National Air Emissions Inventory for 2015 (Metcalfe and Sridhar, 2018) which provides estimated emissions of PM10, PM2.5, CO, NOx and SOx for all the main domestic transport modes.
- New Zealand's Greenhouse Gas Emissions Inventory 1990 2018 (MfE, 2020).

Spatial disaggregation

Spatial disaggregation of the national figures was seen as important, particularly between urban and rural areas, as the impacts of air quality pollutants are almost entirely linked to the relevant populations in adjacent areas (whereas the GHG impacts are independent of local populations). Given this, we disaggregated the data from the National Air Emissions Inventory between urban areas (defined as all settlements with more than 1000 residents) and rural (all other) areas.⁹⁸

Temporal dimension

All emissions estimates were undertaken for the base period of FY 2018/19, averaging base data for the 2018 and 2019 calendar years where it was not available for the 2018/19 financial year.

11.2.3 Cost factors and their application

Emissions to air, associated with air quality pollutants, cause adverse impacts on society through illness, lost productivity, increased hospitalisation, premature mortality etc; and GHG emissions typically cause adverse impacts through extremes in climate ('global warming') affecting human health, as well as built and natural environments (both in terms of biodiversity and productivity).

The social costs resulting from these effects can be calculated most easily by multiplying the quantity of emissions (in grams or tonnes of the pollutant) by a unit damage cost (\$/tonne) for each pollutant. Damage costs are a way to value changes in emissions so that the benefits to society of a change in policy/operation can be compared against the cost of implementing the change. They can also be used to compare a range of options to see which will result in the best overall outcome.

Emissions damage costs developed for the DTCC Study

The Waka Kotahi 'Monetised Benefits and Costs Manual' (MBCM) contains a set of damage cost values covering the main road transport-related air pollutants. However, these were of somewhat limited value for DTCC Study purposes, particularly as they do not distinguish between values for urban and rural situations. One of the key objectives of the latest 'Health and Air Pollution in New Zealand' (HAPINZ 3.0) study was to develop NZ-specific damage cost values, distinguishing between urban and rural situations. While the completion of the HAPINZ study was delayed (primarily due to Covid-19), we were able to access the study's preliminary findings (particularly relating to the ratio of urban vs rural damage costs).

Based on the HAPINZ results and other 'best estimate' published damage costs, we were able to develop a modified set of unit damage cost values for the main pollutants, with separate

⁹⁸ In understanding the incidence of emissions, we considered that this urban vs rural disaggregation was of greater importance than any regional disaggregation. However, we recognise that this urban vs rural disaggregation is still relatively crude: it could potentially be improved by recognising that the costs imposed by air quality pollutants (e.g., per tonne) are sensitive to the population density in the area or alongside the transport route concerned.

values for urban and rural situations, and adjusted to the base date of June 2019. These rates are shown in Table 11.2.⁹⁹

Pollutant	Costs in NZ\$/tonne Urban	Costs in NZ\$/tonne Rural
PM ₁₀	\$503,346	\$38,480
SO ₂	\$36,491	\$2,790
NOx	\$17,887	\$1,367
VOC	\$1,433	\$110
CO ₂ e	\$88	\$88
со	\$4.52	\$0.35

Table 11.2: Adjusted damage costs used in the DTCC emissions assessment (June 2019 prices)

The Table 11.2 cost rates have been applied for all modes throughout the DTCC environmental impact analyses. We have also assumed that:

- all environmental costs are additive (i.e., there is no double-counting between different pollutants); and
- the rates given may be applied to marginal situations as well as 'average' situations (i.e., the marginal environmental costs are equal to the average environmental costs).¹⁰⁰

11.2.4 Consideration of 'whole of life' impacts

Typically (and in the assessment above), the impacts assessed are limited to those air quality and GHG emissions resulting from the direct use (only) of the various modes in their typical situations – in other words they relate to fuel combustion, brake and tyre wear, and road abrasion (dust from sealed and unsealed roads). However, there are other 'upstream' and 'downstream' processes related to transport that also lead to negative external effects. Taking a *life-cycle view*, the energy production, the vehicle and infrastructure production, maintenance and 'end-of-life' disposal (scrappage) are all associated with additional air pollutants and greenhouse gases.

Typically, assessments focus on 'tank-to-wheel' (TTW) emissions only. More holistic assessments, which are becoming increasingly common, include 'well-to-tank' (WTT) emissions also, resulting in a 'well-to-wheel' (WTW) assessment: this covers all the emissions associated with generating a given amount of fuel or energy and delivering it to the transport mode which then uses it. Typical WTW/TTW GHG emissions ratios (and their resultant damage costs using the same figures in costs/tonne from Table 11.2.2) are around 1.125 for petrol, 1.170 for diesel¹⁰¹, but comparable ratios for AQ emissions are unknown. Less information is available about GHG emissions associated with downstream processes, such as vehicle disposal/scrappage, although it would be expected that any 'mark-up' on the WTW GHG emissions costs would be less than the 1.125 and 1.170 factors above.

⁹⁹ The damage costs shown in Table 11.2 for urban situations are generally similar to those in MBCM (allowing for inflationary effects); but MBCM does not include any values for rural situations.

¹⁰⁰ The DTCC WP D4 (section 2.2.2) discusses these and related assumptions in more detail.

¹⁰¹ Refer to WP D4, Table 2.3 for further details.

11.2.5 Results

Overview

A summary of the DTCC results for environmental damage costs relating to transport emissions is given in Table 11.3 (greenhouse gas emissions – WTW basis) and Table 11.2 (air quality emissions – TTW basis only). Each table is split between urban and rural areas, between person transport and freight transport, and further sub-divided between transport modes¹⁰².

In each case, the tables (columns) show:

- Total annual damage costs (\$m)
- Average damage costs per person km (c/pk) for person travel; and average costs per net tonne km (c/ntk) for freight transport.

The cost/vehicle km metric is commonly used throughout the transport sector as a useful measure of the relative costs for different modes, in different circumstances etc. Its main limitation is that it takes no account of the differences in transport capacity between different vehicles (e.g., comparing a 4-seater car with a 40-seater bus). More useful metrics allow for the different capacities of different vehicle types and, when reflecting the relative efficiency of different services, also allow for the size of the transport task actually being undertaken (e.g., the number of person kms involved). This is reflected in the three RH column figures in each table, i.e., costs per person km (person travel) and costs per net tonne km (freight transport): these are the primary focus of discussion of the damage cost results in the following Sections 11.2.5.2 (GHG emissions) and 11.2.5.3 (air quality emissions).

The total annual damage costs (total \$2,882m pa) are split, with \$1,676m pa relating to greenhouse gases, and \$1,206m pa relating to air quality emissions. Person transport accounts for 59% of the total GHG emissions costs but 46% of the total air quality emissions costs: this result reflects that the air quality costs are dependent on where people are actually exposed rather than where the emissions are released, e.g., many airports in New Zealand are located in rural areas and contribute to GHGs equally but their air quality impact in these areas is relatively minor given their lower population densities.

¹⁰² Note that walking and cycling modes are not included in these tables, on the basis that the emissions involved for these modes are zero or negligible.

Mode	Tot	al costs – \$n	n pa	Average (I	normalised) ·	– c/pk, c/ntk
All costs in June 2019 \$	Urban	Rural	NZ Total	Urban	Rural	NZ Total
Person transport	\$380	\$604	\$984	1.3	1.6	1.5
Passenger car	\$333	\$508	\$841	1.5	1.5	1.5
Coach	\$0.8	\$2.9	\$3.7	0.7	0.7	0.7
Other bus	\$1.7	\$5.8	\$7.5	0.6	0.6	0.8
Motorcycle	\$1.4	\$2.2	\$3.6	0.9	0.9	0.9
Long-distance rail	\$0.03	\$0.13	\$0.2	0.1	0.1	0.1
Domestic aviation	\$22	\$81	\$103	0.4	5.1	1.4
Urban bus	\$16	-	\$16	1.6		1.6
School bus	-	\$3.9	\$3.9		1.0	1.0
Urban rail	\$1.0	-	\$1.0	0.2		0.2
Urban ferry	<u>\$3.7</u>	=	<u>\$3.7</u>	4.1		4.1
Freight transport	\$192	\$500	\$691	1.6	1.8	1.8
LCV	\$120	\$183	\$303	6.6	6.6	6.6
MCV	\$11	\$37	\$48	2.2	2.2	2.2
HCV	\$55	\$189	\$244	1.0	1.0	1.0
Electric locomotive	\$0.02	\$0.1	\$0.1	0.1	0.07	0.07
Diesel locomotive	\$2.7	\$10	\$13	0.4	0.3	0.4
Coastal freighter	\$3.1	\$81	\$84	0.1	6.5	1.6
Total (\$M)	\$572	\$1,103	\$1,676			

Table 11.3: Total and normalised Greenhouse Gas (GHG) emissions costs (WTW basis), 2018/19

Mode	Tot	al costs -\$n	n pa	Average	(normalised) costs -c/pk, c/ntk
All costs in June 2019 \$	Urban	Rural	NZ Total	Urban	Rural	NZ Total
Person transport	\$486	\$68	\$555	1.6	0.2	0.8
Passenger car	\$385	\$64	\$449	1.7	0.2	0.8
Coach	\$2.4	\$0.6	\$3.0	2.0	0.2	0.6
Other bus	\$4.4	\$1.2	\$5.6	1.6	0.1	0.5
Motorcycle	\$9.4	\$1.4	\$11	5.8	0.5	2.5
Long-distance rail	\$0.18	\$0.06	\$0.2	0.9	0.1	0.2
Domestic aviation	\$18	\$0.4	\$19	0.3	0.02	0.3
Urban bus	\$51	-	\$51	5.0	-	5.0
School bus	-	\$0.8	\$0.8	-	0.2	0.2
Urban rail	\$1.0	-	\$1.0	0.2	-	0.2
Urban ferry	\$14	-	\$14	15.7	-	15.7
Freight transport	\$559	\$93	\$652	4.5	0.3	1.7
LCV	\$327	\$43	\$370	18.0	1.6	8.1
MCV	\$33	\$9	\$42	6.5	0.5	1.9
HCV	\$137	\$36	\$173	2.6	0.2	0.7
Electric locomotive	\$0	\$0	\$0	0.0	0.0	0.00
Diesel locomotive	\$15	\$4.2	\$19	2.3	0.1	0.5
Coastal freighter	\$47	\$0.4	\$48	1.2	0.0	0.9
Total (\$M)	\$1,045	\$161	\$1,206			

Table 11.4: Total and normalised Greenhouse Gas (GHG) emissions costs (TTW basis), 2018/19

GHG emissions results and comments

The GHG emissions total (\$1,676m pa) comprises \$984m (59%) from person transport modes and \$691m (41%) from freight transport modes. We comment on the results for each of these sectors in turn in the following.

Person transport results

The total cost of \$984m is dominated by car travel, which accounts for \$841m (i.e., 85% of the total): this primarily reflects the dominance of cars in total traffic volumes. The second highest GHG emissions contributor is for domestic aviation (\$103m, some 10.5% of the total). All other person transport modes together account for less than 5% of the total person transport emissions costs: the various bus modes account for the majority of this 5%.

The most relevant person transport metrics in Table 11.2 and Table 11.3 are the damage costs/person km (c/pkm). For the person transport modes, the damage cost per person km for cars (1.5c) is towards the high end of the unit cost range. Most types of bus services have somewhat lower emissions cost rates than cars (e.g., school buses at 1.0c/pkm and long-

distance coach services at 0.7c/pkm); but notably, urban bus services have an average rate of 1.6c/pkm¹⁰³, i.e. almost the same as estimated for person car travel (ie 1.5c/pkm).

Urban rail and long-distance rail services have the lowest damage cost rates, by a considerable margin, whereas urban ferry services have the highest rates (more than double those of other modes on a person km basis)¹⁰⁴.

Freight transport results

The annual total freight transport damage cost of \$691m (for 2018/19) accounts for some 41% of the transport total (freight plus persons) emissions costs. The freight commercial vehicle cost component total of \$595m accounts for 86% of the \$691m figure. The next largest component is the \$84m for coastal freight shipping which accounts for some 12% of the total freight sector damage costs. By comparison, rail freight environmental damage costs are very low, only \$13m pa in total.

The most relevant freight metric (Table 11.2) is that for total damage costs/net tonne km (ntk). Heavy commercial vehicles (trucks), which are the main competitor for rail and shipping modes, have an average damage cost of 1.0c/ntk. This is lower than the cost rates for coastal freighters (1.6c/ntk), but considerably higher than the cost rate for rail (which is dominated by diesel locomotives, with a rate of 0.4c/ntk).

Air quality results and comments

The air quality emissions damage costs total \$1,206m pa, comprising \$555m (46%) from person transport modes and \$652m (54%) from freight transport modes. As in the GHG case, the most relevant metrics in Tables 11.3, 11.4 are the damage costs/person km for person transport, and damage costs/net tonne km for freight transport. We comment on the results for each of these sectors in turn in the following.

Person transport results

The total cost of \$555m is dominated by car travel, which accounts for \$449m (81% of the total): this primarily reflects the dominance of cars in total traffic volumes. The second highest air quality emissions contributor is for urban bus services (\$51m, some 9.2% of the total). All other person transport modes together account for the remaining 9.9% of the total person transport damage costs.

For the person transport modes, the damage cost per person km for cars (0.8c) is around the average of the unit cost range. Most types of bus services have somewhat lower emissions cost rates than cars (e.g., school buses at 0.2c/pkm and long-distance coach services at 0.6c/pkm); but urban bus services have a much higher average rate of 5.0c/pkm, i.e., the highest of all modes apart from urban ferry. This high rate for urban bus services reflects that the great majority of their kilometres are operated within urban areas and that their average loadings (e.g., as measured by passenger km/vehicle km) are relatively modest, i.e., on average around 20% -25% of a full seated load.

¹⁰³ Note that this emissions cost rate for urban bus services is based on bus operations in 2018/19: it is expected to reduce considerably with the proposed progressive electrification/decarbonisation of the urban bus fleet.

¹⁰⁴ With the progressive introduction of electric ferries to the NZ urban ferry fleet (primarily in Auckland and Wellington), the current relatively high GHG damage costs for ferries are expected to considerably reduce.

Urban rail and longer-distance rail services have among the lowest damage cost rates, whereas urban ferry services have the highest rates by a considerable margin¹⁰⁵.

Freight transport results

The total freight transport damage cost related to air quality is \$652Mpa, which is somewhat higher than the person transport total damage costs. The freight commercial vehicle cost component total of \$585m accounts for 90% of this \$652m figure. The next largest component is the \$48m for coastal freight shipping, which accounts for some 7.4% of the total freight sector damage costs. By comparison, rail freight air quality damage costs are very low, only \$19m in total.

The most relevant freight metric (Table 11.2) is that for total damage costs/net tonne km (ntk). Heavy commercial vehicles (trucks), which are the main competitor for rail and shipping modes, have an average damage cost of 0.7c/ntk. This is less than the cost rates for coastal freighters (0.9c/ntk), but considerably higher than the cost rate by rail (which is dominated by diesel locomotives, with a rate of 0.5c/ntk)

11.2.6 Priority aspects for further work

We have identified the following priority areas for potential future research.

Incorporation of HAPINZ 3.0 damage costs and future air pollution studies

As mentioned, the damage costs used to value air emissions impacts in this Study were taken from the Waka Kotahi 'Monetised Benefits and Costs Manual' and adjusted using preliminary HAPINZ 3.0 findings to indicate urban: rural cost ratios. This was the best information publicly available at the time of preparation.

The HAPINZ 3.0 study has now been released (6 July 2022) and includes updated damage costs that are significantly higher than used in the DTCC work - principally because the true impact of NO_2 emissions was not known at the time of the DTCC work. The major differences in terms of impact on the DTCC numbers are:

- HAPINZ 3.0 values NO_x significantly higher (28x) than in DTCC e.g., \$499,526 per t/urban versus \$17,887.
- HAPINZ 3.0 values PM2.5 rather than PM10 which doesn't make much difference for transport exhaust emissions (but will likely impact the costing of road dust/brake & tyre wear for on-road vehicles in particular). Also, the HAPINZ urban number is 20% higher, \$622,786 per t/urban versus \$503,346.
- HAPINZ 3.0 found slightly lower rural to urban ratios, thereby reducing many of the rural damage costs by 50% (however, these are still dwarfed by the urban costs).

Adopting the HAPINZ 3.0 numbers would increase the air quality costs reported in this chapter more than 10-fold, as the social costs associated with transport-related air quality emissions for 2018/19 are now estimated at close to \$11 billion rather than around \$1.2 billion reported here.

As an added complication, the HAPINZ 3.0 (and MBCM) costs are based on the current VoSL which is being reviewed and will likely increase. If the VoSL does increase, then the damage

¹⁰⁵ With the progressive introduction of electric ferries to the NZ urban ferry fleet (primarily in Auckland and Wellington), the current relatively high air quality damage costs for ferries are expected to considerably reduce.

costs for Pm and NO_x will be even higher and a further update would be warranted.

We therefore recommend updating the DTCC documents with the revised HAPINZ 3.0 damage costs (and to be adjusted by the pending VoSL changes once the new VoSL is available). It is highly desirable that policy options are based on the latest and most consistent data across all agencies.

There would also be merit in holding a workshop to identify ways in which HAPINZ 3.0 or its future iterations could be updated to better meet transport sector needs.

Improved assessment of localised GHG and air quality costs

The DTCC methodology was able to distinguish damage costs as either urban or rural. Other jurisdictions, such as the UK Department of Food, Environment and Rural Affairs (DEFRA), publish damage costs which cover a much wider range of population density options.

The results of HAPINZ 3.0 may be able to be combined with currently available GIS-based tools – such as the Waka Kotahi Vehicle Emissions Mapping Tool – to improve the spatial/density resolution of the GHG and air quality costs resulting from domestic transport (at least for the road transport sector). This would enable improved assessment of smaller-scale transport policy/development changes or trends.

Improved understanding of upstream and downstream emissions costs

As shown in the DTCC work reported here, the impacts of upstream GHG energy emissions are comparable to those from the use of the energy in the transport mode. Currently we have only somewhat limited information for upstream GHG emissions, with no robust data available on upstream air quality emissions let alone any information on downstream emissions costs.

As a starting point, we would recommend undertaking a comprehensive literature review to establish the likely contribution of these additional upstream/downstream costs to the costs already identified. The next steps would then be to use this information to scope future research priorities.

Improved understanding of costs/benefits of sustainable transport

The DTCC Study does reflect the (likely) reduced contribution of sustainable transport modes to overall GHG and air quality costs for each mode. However, the benefits specifically associated with these modes versus conventional transport are not explicitly highlighted. With New Zealand increasing its momentum in addressing GHG emissions from transport (in particular), taking as holistic approach as possible to assessing emissions and associated costs from different transport modes is critical to ensuring responsible transport policy making and societal choices.

We recommend undertaking research to quantify the relative emissions contributions of sustainably-powered transport options for New Zealand (e.g., cars – battery electric, hybrid, v diesel, v petrol; electric buses, electric ferries etc) – again to inform robust decision making by policy makers and society at large. It is critical that, to the maximum extent possible, this assessment encompasses upstream, in use and downstream emissions impacts.

11.3 Noise

11.3.1 Overview

Transport noise is widely considered as one of the most unpleasant and damaging impacts of transport systems and their usage, particularly in metropolitan/urban areas, and in the vicinity of major roads and railway lines. Long-term exposure to transport-generated noise can have detrimental effects on human health, amenity, and productivity. These effects have economic and social costs which are borne by the individual, the health system and the broader economy.

The primary purpose of the DTCC work on transport noise and its impacts was to estimate the total economic/social costs and the average costs of this noise exposure for different transport modes (road, rail, coastal shipping and domestic aviation¹⁰⁶) in the New Zealand context.

Our assessment estimated the average noise exposure costs, normalised by distance or movement, and disaggregated these where appropriate to assist with policy analysis. It also set out a methodology to estimate typical marginal noise costs: these reflect the noise impacts of marginal changes in traffic volumes on existing routes for typical categories of road and rail services.

11.3.2 Methodology

Methods were developed to estimate sound levels at residences from road, rail, domestic air and coastal shipping, based on currently available travel movement data.

Dose-response curves were established to estimate the population who are forecast to suffer from high annoyance, high sleep disturbance, or increased risk of ischemic heart disease as a result of transport noise. These impacts were expressed in terms of the number of 'Disability Adjusted Life Years' (DALYs), based on published 'disability weights' for each condition: these values were then monetised using the Value of Statistical Life (VoSL) estimated for New Zealand, which is a major component in the social costs of vehicle crashes¹⁰⁷.

Prior to this DTCC work, only limited studies in New Zealand had monetised effects from environmental noise, and no standardised method had been established. This Study has largely adopted the methodology detailed in the European Environmental Agency (EEA) publication *Environmental noise in Europe – 2020.* A more comprehensive evaluation of monetisation methods for assessing transport noise was being undertaken by Waka Kotahi at the time of the Study¹⁰⁸. It would appear appropriate to review the methods and findings of the DTCC work reported here following completion of this Waka Kotahi study.

11.3.3 Results – Total and average costs

A summary of the total annual costs and average costs attributed to each of the main transport modes/modal categories is provided in Table 11.5 (all costs are given in NZ\$2018/19 prices, based on a 4% real discount rate).

¹⁰⁶ For completeness, domestic aviation was covered in this part of the DTCC Study, though it was not 'formally' within the Study scope.

¹⁰⁷ We note that the Value of Statistical Life (VoSL) in the NZ context is currently under review through consultant studies being undertaken for Waka Kotahi.

¹⁰⁸ Waka Kotahi ART 19-01 – Social cost (health) of land transport noise exposure in New Zealand.

Source	Туре	Total cost (2018/19)	Average passenger costs	Average freight costs
Road	Passenger (car etc)	\$718 m	2.57 c/VKT 1.49 c/pkm	
	Freight (trucks)	\$192 m		1.25 c/ntk
	Total	\$910 m		
Rail	Passenger (urban)	\$15 m	1.90 c/pkm	
	Freight	\$58 m		1.50 c/ntk
	Total	\$72 m		
Air	Passenger	\$37 m	\$79 per landing or take-off	
Coastal shipping	Freight	\$4 m		6.81 c/tonne
Total all modes		\$1,023 m		

Table 11.5: Total ((annual) and aver	age noise costs b	y mode (2018/19)
---------------------	-------------------	-------------------	------------------

Total noise costs are estimated as annual figures, with a total cost over the four modes/categories of \$1,023 million. Some 90% (\$910 million) of this total relates to road traffic, of which the great majority (79%) relates to person travel (mainly by car), the remainder to freight (truck movements). The total noise costs for rail traffic are much lower, at \$72 million, of which the majority relates to rail freight movements. The other two modes (domestic aviation, coastal shipping) account for the final 4% of total noise costs, with domestic passenger aviation accounting for \$37 million and coastal shipping for a further \$4 million¹⁰⁹.

Average costs were derived from the total annual cost figures by dividing by the most appropriate measure of the transport task. For road and rail person travel, the measure applied is person kilometres (pkm); for road and rail freight movements, the most appropriate measure is net tonne kilometres (ntk. For air passenger travel, the measure used is \$ per landing or take-off event (given that the noise nuisance relates primarily to these events). Similarly, for coastal shipping, the measure used is cents per tonne of freight transported.

11.3.4 Results – Marginal costs

A marginal costing methodology was developed and applied to estimate typical marginal noise costs for small (marginal) changes in traffic volumes on the existing transport networks¹¹⁰. The general finding is that marginal cost rates (per incremental VKT etc) are typically 20% - 30% of average cost rates for the existing traffic.

11.3.5 Priority aspects for further work

The methods adopted in this Study have been designed to allow simple updates for rail and airport movement numbers, without requiring extensive noise mapping. Road noise exposure

¹⁰⁹ The cost estimates for air passengers and coastal shipping freight are considered the least accurate of the estimates for the four modes. In both cases, the figures largely relate to noise at the start and end of the journeys (i.e., at/near the airport or seaport concerned).

¹¹⁰ The marginal costing methodology developed is set out in DTCC WP D5 (section 5.3), with a primary emphasis on methods for the road network.

has been based on detailed predictions made by/on behalf of Waka Kotahi, which are expected to be updated periodically.

As noted earlier (Section 11.3.2), it may be useful to review the methods and findings from the DTCC work with those from recent WK work on methods for monetising transport noise

11.4 Biodiversity and biosecurity

11.4.1 Overview

This section assessed the 'costs' of using our environment to deal with ground-based emissions from the domestic transport system, and the impacts on biodiversity from the provision and operation of transport infrastructure and services.

Importantly this assessment only considers the annualised costs (total and average) associated with the operation of **existing** transport infrastructure and estimates the costs of upgrading existing infrastructure to remediate adverse effects. It does **not** consider the costs of consenting or construction of new infrastructure or the associated effects on terrestrial vegetation, habitats, and fauna of such works.

Our work was concerned with the domestic transport system and primarily road, rail and coastal shipping operations. (Initial consideration was also given to domestic air travel, but this did not progress further as it was considered unlikely to have significant effects.)

11.4.2 Consideration of alternative methods

Our investigations initially explored the range of methods that have been applied nationally and internationally to assess ecosystem value and costs (harm) to biodiversity of these transport modes. We found that all previous approaches were proxies for harm with greater or lesser relevance and limitations. None put a value on the ecosystem being affected, addressed the actual harm being done to the environment, or considered the cost of avoiding or minimising that harm.

We therefore sought to better understand the degree of environmental harm of each transport mode by applying "Contingent Valuation" (willingness to pay) methods. Using this approach, the term "cost" relates to the estimated annual dollar value of the "loss of ecosystem function" due to environmental degradation. In addition, we considered a "Cost to Treat" scenario, which sought to put an annual dollar value on minimising or limiting environmental harm below thresholds of concern. For this approach we assessed recent treatment methods, with the annualised installation and maintenance cost assuming a 50yr design life.

11.4.3 Results summary and commentary

We concluded that roading has the greatest potential impact on New Zealand's ecology given its scale of infrastructure, number of vehicle movements, and tonnes of freight moved. The key biodiversity/ecological costs of roading are related to stormwater and contaminant discharge to streams and the near-shore coastal environment.

We concluded that rail has a much smaller scale of impact due to its less extensive, narrow, fixed and contained corridors, with many fewer train movements, both passenger and freight, and a much smaller volume of freight carried. Like roading, the key ecological costs of rail are related to the discharge of contaminants from the rail corridor to streams and the coastal environment.

Coastal shipping has the most complex and diverse range of ecological effects, extending across onshore, estuary, harbour, coastal and marine environments. It also impacts on specific marine fauna. Several methods were used to value affected environments and cost each component of harm. We note that our cost assessments for coastal shipping combined all forms of ecological damage caused by the relevant port and shipping activities in total; but we then took only a proportion (13% on average) of these total impacts, based on the tonnage of coastal shipping through the relevant port relative to the total port throughput.

In terms of biosecurity, roading and domestic shipping are considered to be the main mechanisms for the dispersal of Alien Invasive Species (AIS) that arrive in New Zealand: rail (and air) are relatively minor contributors. However, after considering all available information we concluded that it was not possible to apportion economic biosecurity costs to any one or a combination of the four transport modes. As a result, no quantified analysis of biosecurity impacts was carried out.

Results are summarised in Table 11.6. In this table the road and rail transport modes include contingent valuation without treatment (A) as a stand-alone cost. This equates to the perceived annual value of loss of ecosystem services. In addition, contingent valuation with treatment (B1) is provided, allowing also for the additional cost to treat (B2): the two values are additive. The total annual costs caused by each mode were first estimated, with their allocation between road and rail made on the basis of relative damage factors.

	Total costs	Averag	e costs
Road Transport	Costs pa (\$m)	c/person km (person travel)	c/net tonne km (Freight travel)
A. Contingent Valuation (Without treatment)	131.15	0.142	0.135
B1. Contingent Valuation (With treatment @ 70%)	21.48	0.023	0.022
B2. Cost to Treat (Annualised ~ 50yr design life	105.05	0.114	0.108
Rail Transport	Costs pa (\$m)	c/person km	c/net tonne km
A. Contingent Valuation (Without treatment)	0.47	0.030	0.007
B1. Contingent Valuation (With treatment @ 70%)	0.06	0.007	0.000
B2. Cost to Treat (Annualised ~ 50yr design life	0.36	0.013	0.004
Coastal Shipping	Costs pa (\$m)	Cost/ntk (c)	Cost/tonne (\$)
Total combined cost	34.43	0.744	6.620

Table 11.6: Assessment of biodiversity	total and average costs by transport mode
(treatment costs in NZ \$million pa) ¹¹¹ .	

¹¹¹ Average costs in this table are expressed per (i) person kilometre of travel for person movements and (ii) net freight tonne kilometres for freight haulage. Estimates of annual person km and freight net tonne km are based on DTCC analyses by IWA for year 2018/19.

11.4.4 Limitations, future updates, and potential additional areas of work

This Study has identified a significant gap in knowledge and understanding of the scale, distribution, and severity of effects on biological systems from the operation and maintenance of each transport mode considered. We concluded with a range of suggestions for improving knowledge and understanding of biodiversity and biosecurity values, the effects (costs) on them of transport activities, and allocation of those costs between transport modes.

Appendix 1	Glossary of Terms and Abbreviations
------------	-------------------------------------

Term	Definition
AC	Auckland Council
AC	Average cost
ACC	Accident Compensation Corporation
AKL	Auckland
AT	Auckland Transport
BC	Black carbon
B/bn	Billion
CAF	Construcciones y Auxiliar de Ferrocarriles (Spanish supplier of Auckland's commuter trains)
CAM	Cost allocation model
CBD	Central business district
CH ₄	Methane
СНС	Christchurch
CO ₂	Carbon dioxide
CO ₂ e	Carbon dioxide equivalent
CRL	City Rail Loop (Auckland)
DALY	Disability-adjusted life year
Depn	Depreciation
DHC	Depreciated historic cost
DRC	Depreciated replacement cost
DTCC	Domestic Transport Costs and Charges (this Study)
DTIMS	Deighton Infrastructure Management System
EMU	Electric multiple unit
ESA	Equivalent standard axle
ETS	Emissions trading scheme
exc	Excluding
FAC	Fully allocated costs
FED	Fuel excise duty
FIGS	Freight Information Gathering System
GHG	Greenhouse gases
GPS	Global positioning system

Term	Definition
GST	Goods and services tax
gtkm	Gross Tonne Kilometre(s)
GWRC	Greater Wellington Regional Council
HAPINZ	Health and Pollution in NZ (study)
HCV	Heavy commercial vehicle
HCV2	50 Max HCV
HSWA	Health and Safety at Work Act 2015
HTS	Household travel survey
Infra	Infrastructure
IWA	Ian Wallis Associates
KR	KiwiRail
LAPT	Local authority petroleum tax
LCL	Less-than-container-load
LCV	Light commercial vehicle
LGAs	Local government authorities
LRMC	Long run marginal cost
LRs	Local roads
М	million
MC	Marginal cost
MCV	Medium commercial vehicle
МоТ	Ministry of Transport (Te Manatū Waka)
Мра	Millions per annum
Mtce	Maintenance
N'wk	Network
NFDS	National Freight Demand Study
NI	North Island
NIMT	North Island Main Trunk
NLTF	National Land Transport Fund
NLTP	National Land Transport Programme
ntk, ntkm	Net tonne kilometre(s)
NZRC	New Zealand Railways Corporation
NZTA	Waka Kotahi New Zealand Transport Agency
NZTA	New Zealand Transport Agency (Waka Kotahi)

Term	Definition
O&M	Operations and Maintenance
ODRC	Optimised depreciated replacement cost
Opns	Operations
Pax	Passenger
PAYGO	Pay-as-you-go
PCU	Passenger car units
PEFM	Petroleum or engine fuel monitoring
pkm	Passenger kilometre(s)
PPP	Public Private Partnership(s)
PT	Public transport
РТОМ	Public Transport Operating Model
PUD	Pick-up and delivery
QALY	Quality-adjusted life year
RA	Railways Act 2005
RC(s)	Regional council(s)
RFT	Regional fuel tax
RMA	Resource Management Act 1991
RNIP	Rail Network Investment Programme
RoPax	Roll-on roll-off passenger ferry
RoRo	Roll-on roll-off ferry
RUC	Road user charges
SCI	Statement of Corporate Intent
SH(s)	State Highway(s)
SI	South Island
SMC	Social marginal cost
SOE	State-Owned Enterprise
SRMC	Short run marginal cost
STCC	Surface Transport Costs and Charges (study)
TAIC	Transport Accident Investigation Commission
TEU	Twenty foot equivalent unit (shipping container)
TLA	Territorial local authority
TOF	Transport Outcomes Framework
ттw	Tank to wheel

Term	Definition			
TUC	Track User Charge			
UPT	Urban public transport			
Veh	Vehicle			
VKT	Vehicle kilometres travelled			
VoSL	Value of statistical life			
WACC	Weighted average cost of capital			
Waka Kotahi	Waka Kotahi New Zealand Transport Agency			
WK	Waka Kotahi (NZ Transport Agency, NZTA)			
WLG	Wellington			
WP	Working Paper			
WTP	Willingness-to-pay			
WTT	Well to tank			
WTW	Well to wheel			

Appendix 2 Listing of DTCC Working Papers

The table below lists the Working Papers prepared as part of the DTCC Study, together with the consultants responsible for their preparation.

Ref	Topic/Working Paper title	Principal Consultants	Affiliation		
	MOL	DAL TOPICS			
C1.1	Road Infrastructure – Marginal Costs	Devid Lunton	David Lupton &		
C1.2	Road Infrastructure – Total & Average Costs	David Lupton	Associates		
C2	Valuation of the Road Network				
C3	Road Expenditure & Funding Overview	Disbord Doling	Dishard Daling Canaulting		
C4	Road Vehicle Ownership & Use Charges	Richard Paling	Richard Paling Consulting		
C5	Motor Vehicle Operating Costs				
C6	Long-distance Coaches	David Lupton	David Lupton & Associates		
C7	Car Parking				
C8	Walking & Cycling	Stuart Donovan	Veitch Lister Consulting		
C9	Taxis & Ride-hailing	Stuart Donovan	Verten Lister Consulting		
C10	Micro-mobility				
C11.2	Rail Regulation (note 2)				
C11.3	Rail Investment (note 2)				
C11.4	Rail Funding (note 2)	Murray King	Murray King & Francis Small Consultancy		
C11.5	Rail Operating Costs (note 2)				
C11.6	Rail Safety (note 2)				
C12	Urban Public Transport	Ian Wallis & Adam Lawrence	Ian Wallis Associates		
C14	Coastal Shipping	Chris Stone	Packnoint Corporato Financo		
C15	Cook Strait Ferries	Chins Stone	Rockpoint Corporate Finance		
	SOCIAL AND ENVIRO	ONMENTAL IMPACT TOPICS			
D1	Costs of Road Transport Accidents	Glen Koorey	ViaStrada		
D2	Road Congestion Costs	David Lupton	David Lupton & Associates		
D3	Health Impacts of Active Transport	Anja Misdrak & Ed Randal	University of Otago (Wellington)		
D4	Air Quality & Greenhouse Gas Emissions	Gerda Kuschel	Emission Impossible		
D5	Noise	Michael Smith	Altissimo Consulting		
D6	Biodiversity & Biosecurity	Stephen Fuller	Boffa Miskell		
Notes:	1		1		

Notes: 1. The above listing incorporates a number of variations from the initial listing and scope of the DTCC Working Papers as set out in the DTCC Scoping Report (May 2020).

2. Rail related working papers will not be published, on the ground s of being 'commercial in confidence' to KiwiRail

Appendix 3 Summary of Economic and Financial Performance (2018/19)

						ROAD			RAI	(NON-URE	BAN)	URBAN PUBLIC TRANSPORT			WALKING & CYCLING		LING	GRAND TOTALS		
			Units	Total	Heavy freight (HCV2)	Other freight	Freight total	Person (light vehicles)	Total	Freight	Person	Total	Train	Bus	Ferry	Total	Walking	Cycling (incl. e- bike)	Persons	Freight
	Person trips		mill								0	170	36	126	8	826	744	82		
	Person km		mill pkm					58,405			73	1,588	607	890	91	945	656	289	61,011	
	Seat km		mill								136									
Transport task	Vehicle km		mill	48,600	1,300	8,800	10,100	38,600			n.a.	125	8	116	2	289		289		
	Train km		mill							10	1									
	Tonnes (net)		mill							20										
	Tonne km (net)	Rail incl 3P container tare	mill ntk		20,300	10,600	30,800			4,407										35,20
	Person Hours											58	13	40	5	150	131	19		
ECONOMIC ANALYSES																	-			
		Asset charge (incl land)	\$mill	4,448	568	907	1,475	2,973	261	257	3	Total LIPT fi	ures for Pub	lic Sector C	oste are not					
	Infrastructure (Note 2)	Depreciation/rehabilitation	\$mill	933	257	207	464	470	217	214	3		ated betweel			1,496	1,333	163		
		Network operation & maintenance	\$mill	1,124	82	229	311	813	91	90	1		a more detail		•					
Public sector costs		Police/emerg services	\$mill	355	10	63	73	282					services (as a							
(infra & services)	_	Asset charge	\$mill	n.a.			0	n.a.			4	undertaken and is included in WP C.12: Urban		0	0	0				
	Services	Depreciation/rehabilitation	\$mill	n.a.			n.a.	n.a.	Reda	Redacted	6		Public Transport.			0	0	0		
		Operations & maintenance	\$mill	n.a.			n.a.	n.a.			29				0	0	0			
	Sub-total		\$mill	6,861	917	1,406	2,323	4,538	1,087	1,042	46	1,306	365	865	76			163	7,385	3,36
	Vehicles/operations (resource cost only, excl taxes and duties)		\$mill	42,655	3,787	18,332	22,119	20,536				0	0	0	0	87	-	87		
	Time-working		\$mill	35,279	2,290	15,368	17,658	17,621		n.a.	0					273		35		
User economic costs	Time-other		\$mill	13,495	0			13,495		n.a.	12		167	534	67	1,520	1,325	195		
	Sub-total (excluding park	51	\$mill	91,429	6,077	33,700	39,777	51,652	0	0	12	768	167	534	67	1,879	1,563	317	54,311	39,777
	Other economic costs -	Parking		14,656				14,656												
	Social costs of accidents	6	\$mill	5,369	53	337	390	4,979	15	15		n.a.	[Not se	eparately ide	ntified]	1,116	780	336		
	GHG emissions		\$mill	1,471	175	370	544	926	13	13	-	21	1	16	4	0	0	0		
	Air quality emissions		\$mill	1,105	124	400	523	582	19	19	-	66	1	51	14	0	0	0		
Social & envl costs	Noise		\$mill	910	25	167	192	718	58	58	n.a.	n.a.				0	0	0		
	Ecology/biodiversity		\$mill	105	8	24	32	73	0	0	0	n.a.	[Not se	eparately ide	ntified]	0	0	0		
	Health impacts	(Note 3)	\$mill	0					0	0		n.a.				-2,353	-1,891	-462		
	Sub-total		\$mill	8,960	385	1,297	1,682	7,278	106	105	1	87	2	67	18	-1,237	-1,111	-126	6,129	1,787
	Total economic costs	(including parking)	\$mill	121,906	7,379	36,403	43,782	78,124	1,193	1,146	59	2,161	534	1,467	160	2,138	1,784	354	82,482	44,929
Economic cost summary	Average economic costs	per ntk	cents/ntk		36	343	142			26										
	Average economic costs	per pkm (including parking)	cents/pkm					134			81	136	88	165	177	226	272	122		
FINANCIAL ANALYSES	(Based on public sector	expenditures and subsidies - excluding	parking)																	
	Taxes & duties	RUC, FED, tolls etc (roads)	\$mill	4,001	697	801	1,498	2503	0	0	0	0	0	0	0	0	0	0	2503	1498
Financial charges	Direct user charges	PT fares, KR freight rates (excl parking					,		434	403	31	360	106	212	41	0	0	0	,	
(excluding parking)	Total	Excluding parking	\$mill	4,001	697	801	1,498	2,503	434	403	31	360	106	212	41	_0	_0	0	2,894	1,90
	Infra & services costs - u	ser charges (financial subsidy or surplu	smill	2,860	220	605	826	2035	654	639	15		259	653	35	1,496	1,333	163	4492	
Financial cost summarv	Financial subsidy (or sur	plus) per ntk	cents/ntk	,	1.1	5.7	2.7			14.5										4.16
	Financial subsidy per pk		cents/pkm	5044	700/	E70/	0.5%	3.5	10%	2004	20.2	59.6	42.6	73.3	38.3	158.4	203.3	56.5	7.4	
	User charges/public sect	tor costs (% financial cost recovery)	CR%	58%	76%	57%	65%	55%	40%	39%	68%	28%	29%	25%	54%	Not releva	ant - no use	r charges	39%	56%

Footnotes:

1. Data for each mode relates strictly to travel on/by that mode: e.g., for a trip by PT, data relates to travel between boarding and alighting stops only, i.e., excludes access and egress travel 'legs', which are covered under the modes used for these legs (e.g., walking). This approach may be a particular issue when comparing, e.g., PT travel with car travel (for which any access/egress trip 'legs' would generally involve lesser time and costs than for the equivalent trip by public transport).

2. The asset charges for road and rail infrastructure are based on a 4% pa charge on the ODRC valuation of the road/rail network (i.e., an economic approach), rather than using the capital expenditure in the year, as used for roads by WK under its 'PAYGO' approach.

3. Public health costs have been assessed relative to a baseline for 'sedentary' modes. Therefore, the numbers given for walking & cycling represent the negative costs (i.e., economic benefits) associated with these two modes relative to the other ('sedentary') modes.

Appendix 4 STCC and DTCC Comparisons – Road

A4.1 Context and overview

The Domestic Transport Costs and Charges Study (DTCC, 2023) focuses on the situation in 2018/19, with all financial figures expressed in FY2018/19 prices. It builds on the analyses undertaken for the earlier Surface Transport Costs and Charges Study (STCC, 2005), which focused on the situation in 2001/02, with all financial figures expressed in FY2001/02 prices. Comparisons between the two studies therefore reflect changes in the NZ transport system over a 17-year period.

The DTCC work was more extensive than that for STCC since it covers a few transport modes that were not covered in the earlier study. These included urban public transport, walking and cycling, taxis and ride-hailing services, and micro-mobility services. However, in relation to the 'primary' modes that were covered in both studies (i.e., motorised freight and person movements on both the road system and the rail system), the coverage and methodologies applied were generally similar in the two studies, although the degree of disaggregation of the analyses by vehicle type and/or market segment was generally greater in the 2023 study.

This Appendix provides comparisons between the findings of the two studies for motorised road transport, for both person and freight movements. Appendix 5 provides comparisons for the rail system.

A4.2 Assessment approach

The two studies differed in their approach on a number of theoretical aspects. In particular:

- In the valuation of assets and the target return on these assets, STCC only included recoverable assets, DTCC included all assets. This is a debatable point, but including all assets is preferred for a going concern, whereas recoverable asset values are more relevant in considering disinvestment options.
- The rate of return used in STCC was 7% pa. whereas for DTCC 4% pa was used (in real terms in both cases). These rates represent the government rates in each respective year.
- STCC allocated road costs only between trucks and cars. DTCC used Te Manatū Waka's cost allocation model (CAM) to derive cost allocation rates that could be applied to any vehicle category. These were used to provide indicative rates by seven representative vehicle types.
- Marginal costs in STCC were calculated based on the costs of incremental traffic flows. This
 should more correctly be extra traffic demand the difference being critical where traffic is
 congested. While noting that marginal costs are highly time and location dependent, DTCC
 developed simple methods of estimating the marginal capacity costs of road traffic and the
 marginal road wear costs of heavy vehicles.
- STCC included congestion costs as user resource costs (i.e., costs experienced by road users) rather than as costs to society at large (albeit largely met by other road users). STCC estimates of parking resource costs were limited to central city areas. STCC also included local body rates as a road user contribution to roads but not as a transport user contribution to public transport.

A4.3 Results and commentary

Table A4.1 sets out the changes in total costs between STCC and DTCC. STCC costs have been inflated by a factor of 1.42, based on the change in the consumer price index between the two study periods¹¹². We estimate that, in real terms, total vehicle operating costs (including time costs) increased 120% between the two studies.

The estimated public agency costs in DTCC were 150% higher than those for STCC (in real terms). However, the main driver of this result is the return on investment being calculated on the total asset value for DTCC rather than on just the recoverable component (i.e., the land only). Adjusting the DTCC value to include land only, together with using 7% as the target rate of return, would reduce the DTCC value to \$4.6 billion, an increase of some 70% on STCC. As noted above, the total asset value is more appropriate for a going concern where investment is ongoing. Other costs (accidents and environmental costs) increased by only 30% in real terms, resulting in an overall increase in total road system costs of about 120% in real terms (as shown in Table A4.1).

One factor behind the doubling of total (real) costs is apparent from Table A4.2. While car kilometres are estimated to have increased by only 12%, truck kilometres have increased by a much greater proportion. In particular, vehicle kilometres and tonne kilometres for both HCV1 and HCV2 have broadly doubled. However, it must be noted that the methodology used to estimate vehicle kilometres for the STCC study was less robust than that used for DTCC (which is nevertheless also only an estimate), hence these comparisons are approximate only.

The STCC study estimated the costs per vehicle-km and net tonne-km for a HCV2 vehicle, which is the type of vehicle most commonly used to compete with rail for the long-distance freight market. The STCC estimate (in \$2018/19), including user charges (but excluding GST), of 18 cents/net tonne-km compares with the DTCC estimate of 33 cents.

Table A4.3 compares the costs and charges for publicly provided infrastructure for cars and trucks. It shows that overall, the proportion of the road system costs borne by road users has remained broadly constant (at around 60%) across the two studies.

¹¹² The NZ CPI factor, taken between 2001 Q1 and 2018 Q4, was 1.42. We took the view that the change in the transport and construction index (a factor of 1.6 between the same periods) was not a good measure to apply, as it covers only a small proportion of total transport sector costs, the great majority being vehicle operating and time costs (as is evident from Table A4.1).

	STCC report	STCC Inflated (CPI)	DTCC report	Increase (real terms)
User resource costs	\$2001/02	\$2018/19	\$2018/19	
Vehicle operating costs	16.80	23.86	42.66	79%
Time costs	11.00	15.62	48.77	212%
Subtotal	27.80	39.48	91.43	132%
Public agency costs				
Network operations and maintenance	0.90	1.27	1.15	-9%
Capital return on infrastructure	0.75	1.07	4.45	318%
Economic depreciation	0.02	0.03	0.78	2,639%
Police, fire, ambulance	0.22	0.31	0.35	12%
Subtotal	1.88	2.67	6.72	151%
Other costs				
Road accident costs	2.87	4.08	5.37	32%
Air pollution	0.44	0.63	1.05	68%
Other environmental impacts	0.73	1.04	1.04	0%
Subtotal	4.04	5.74	7.46	30%
TOTAL ROAD SYSTEM COSTS	33.73	47.89	105.61	121%
User Charges				
Fuel excise	1.09	1.55	1.96	27%
Road user charges	0.58	0.82	1.67	102%
Motor vehicle fees	0.57	0.81	0.23	-72%
Other	0.10	0.14	1.24	780%
TOTAL USER CHARGES	2.34	3.32	4.17	26%
User charges/Public costs (%)		39%	29%	

Table A4.1: Total road system costs [all figures in \$billion pa]

Vehicle type	Veh	icle Km (billion	pa)	Tonne Km (billion pa)			
	STCC (2001/02)	DTCC (2018/19)	increase	STCC (2001/02)	DTCC (2018/19)	increase	
Car	31,782	35,700	12%	n.a.	n.a.	n.a.	
LCV, MCV	2,978	8,100	172%	2,467	6,685	171%	
HCV1	303	601	98%	1,886	3,660	94%	
HCV2	709	1,330	88%	9,678	20,298	110%	
Total	35,771	45,731	28%	14,031	30,643	118%	

Table A4.2: Vehicle-kilometres and Tonne-kilometres, STCC (2001/02) and DTCC (2018/19)

Table A4.3: Costs.	charges and cost reco	verv by vehicle categor	v. STCC (2001/02) ar	nd DTCC (2018/19)
	011a.goo ana 00001000	tory by tornolo outogo.	,	

\$billion pa	C	ars	Tru	cks	Total		
(2018/19 \$)	ѕтсс	DTCC	STCC	DTCC	STCC	DTCC	
Allocated costs	3.1	4.2	2.2	2.4	5.3	6.6	
Estimated charges	2.1	2.4	1.1	1.5	3.2	3.9	
Charges/costs (%)	68%	57%	51%	62%	61%	59%	

Appendix 5 STCC and DTCC Comparisons - Rail

A5.1 Context and overview

This appendix summarises and comments on financial, economic and market statistics for the NZ Rail system for year 2001/02, as derived in the NZ Surface Transport Costs & Charges (STCC) Study, and corresponding statistics for year 2018/19, as derived from the NZ Domestic Transport Costs & Charges (DTCC) Study. The appendix covers two main market segments of the NZ rail business, i.e., freight and long-distance passenger services; it does not cover urban rail passenger services (Auckland and Wellington regions), which are covered elsewhere in this report (in the Urban Public Transport chapter and associated Working Paper).

For the purposes of this appendix, STCC financial figures have been adjusted to 2018/19 prices for consistency with the DTCC prices, based on the NZ CPI movements between the two financial years.¹¹³

This Appendix provides comparisons between the findings of the two studies for the NZ rail system. Appendix 4 provides comparisons for the road-related movements.

A5.2 Rail summary

A5.2.1 Rail freight

Rail traffic grew 3% in ntkm terms between the two studies. This overall growth masks a number of major changes to the traffic mix, including withdrawal from the less-than-container-load (LCL) market, and reductions in longer distance major commodities. While tonnage carried increased by 4%, average haul distances declined as a result of these changes. There were also important changes to the competitive landscape for rail. Growth in the freight market appears to have been largely absorbed by road transport, reflecting the increased capacity of road trucks and their related lower costs. Rail freight revenue rose 13% on a nominal basis but declined 21% in real terms.

Costs in DTCC are only available at the highest level and include an assumed on assets (Table A5.1). Comparisons may be influenced by differing assumptions about asset valuation. In real terms, after adjustment for the differing rates of return on assets, in STCC the operator costs totalled \$774m. In DTCC the equivalent figure was \$1,042m, a difference of \$268m. The valuation of rolling stock increased in real terms between the two years, but that of infrastructure reduced.

In both STCC and DTCC the total economic costs for freight exceeded the revenue: the revenue shortfall was much greater in DTCC (\$639m excluding environmental costs) compared with STCC (\$267m, both in 2018/19 prices). The cost recovery ratio in economic terms (but excluding environmental costs) reduced from 66% in STCC to 39% in DTCC.

¹¹³ No standard index exists reflecting unit cost movements in the NZ rail sector.

Item	STCC (2001/02)	DTCC (2018/19)
	3100 (2001/02)	BTCC (2010/19)
Operator costs	774	1,042
Economic costs total	790	1,147
User charges (revenue)	507	403
Operator costs less revenue	267	639
Cost recovery: revenue/operator costs (%)	65.5%	38.7%

Table A5.1: Costs and revenues summary (freight) (\$m, 2018/19)

Part of the difference between the two years relates to increased infrastructure expenditure. Some \$261m of the DTCC costs (and of the \$639m shortfall) is accounted for by asset charges on below rail assets.

Note that 2018/19 was prior to the change to the government funding of all 'below rail' expenditure to the Rail Network Investment Programme (RNIP) and the NLTF. Conceptually, this new approach is close to the pay-as-you-go system ("PAYGO") applied for roading expenditure. Since no asset charge is made under PAYGO for roads¹¹⁴, adoption of this principle for 'below rail' costs in future would materially change the reported financial outcome for rail (but not the underlying economics).

Environmental costs estimated for the rail system and its operations rose substantially between the two analysis years, largely as a result of higher unit cost rates for environmental impacts. They also rose for road transport, but the margin in favour of rail dropped substantially, largely because of the relative noise valuations.

A5.2.2 Rail long-distance passenger

Long-distance passenger services (including the Capital Connection) represent a small part of the rail business. Fewer services were run in 2018/19 (in DTCC), and passenger numbers were 32% less than in 2001/02 (in STCC). However, revenue in the two years was similar in real terms. Real operating costs were however higher in DTCC, partly as (unlike in STCC) some infrastructure costs were allocated to the passenger business, As a result, DTCC shows a small shortfall in financial terms, compared with STCC's break-even situation.

A5.3 Rail freight business

A5.3.1 Changes in the rail freight business

In the 17 years between the STCC and DTCC analysis years, many significant changes incurred in the rail sector that impacted on any performance comparisons between the two years. These included:

In 2001/02, the managing entity for the rail freight business was Tranz Rail Ltd. It was
operating as a private company and did not receive direct government funding. During that
year, its ownership was transferred from offshore to local shareholders. It was subsequently
sold to the Toll Group and then back to the government. In 2018/19, it became KiwiRail Ltd,
owned by the NZ government. The government injected substantial funds into the

¹¹⁴ An alternative analysis for roads presented along with the PAYGO analysis does include an asset charge.

company, and the following year saw the introduction of funding of the rail infrastructure through the NLTF.

- The railway management provided less information for STCC than it did for DTCC. Consequently, some of the STCC analysis results were derived by modelling. For DTCC, KiwiRail gave the consultants access to full financial and other information requested for the Study (though not all of this could be released to Te Manatū Waka or published).
- The nature of the rail freight business was significantly different in the two Study years. In 2001/02, rail freight included a distribution section, which looked after less-than-container-load (LCL) freight-forwarding traffic. A substantial cost was included in STCC for "pick-up and delivery" (PUD) functions. In DTCC, this was not dealt with separately, as the business no longer had a freight-forwarding operation (it was left with Toll when the government purchased the railway in 2002/03) and PUD-related costs had dwindled to about one-tenth of the STCC level. KiwiRail's wagon fleet also changed to reflect this change in the nature of the traffic and the functions undertaken.
- Major bulk traffics declined as the demand for commodities changed, as a consequence of international demand (coal) and the opening of a major new processing site (milk).
- The total rail network reduced by 500 km or 13% over the two study periods, through the closure of some secondary and minor lines. The Napier-Gisborne line was closed by storm damage in 2012 but has since (subsequent to DTCC) been partially reopened, as far as Wairoa.
- Rail freight rates have been constrained by the rates of competitors, principally road transport operators. Rail tends to compete with the heaviest categories of road trucks available. In 2017, a major shift (downwards) in trucking costs occurred with the introduction of High Productivity Motor Vehicles ("HPMV"). A standard "50 max" HPMV is now permitted a gross vehicle mass of 50 tonnes, with near universal availability: this represented a 13.6% increase on the previous standard maximum weight, most of it in payload. This has resulted in reduced freight rates, limiting the rates rail could charge. HPMV permits can allow heavy vehicles of up to 62t gross vehicle weight.
- Competition on the Cook Strait ferry route intensified between the STCC and DTCC study periods, impacting on inter-island rail freight rates and choice of operator.

Given all these developments over the 17-year period, any comparisons between the STCC and DTCC freight performance need to be interpreted with considerable care.

A5.3.2 Freight operating and financial performance

Table A5.2 compares the aggregate rail freight operating statistics for the two study years. The tonnes and tonne km are on a comparable basis, reflecting freight only (excluding the tare weight of third-party containers). In DTCC, the tonnage and ntkm information was provided by commodity grouping, showing the relative importance of each group: comparable information was not provided in STCC.

Year (study)	Tonnes (m)	Net tonne km (000)	Average haul (km)	Freight revenue \$m Nominal	Freight revenue \$m real (2018/19\$)	Revenue/ntkm, cents – real
2001/02 (STCC)	16.6	3,739*	225	357*	507	13.6
2018/19 (DTCC)	17.3	3,847	222	403	403	10.5
Difference (%)	+4%	+3%	-1%	+13%	-21%	-23%

Table A5.2: Freight Operating Statistics

*includes PUD by road

Table A5.3 shows similar rail traffic levels over the two years, despite the changes occurring behind these figures. Growth in the total freight market appears to have been largely captured by road transport, reflecting the increased road truck capacity and related lower costs referred to above. The reduction in the real revenue figures (23% per ntk in real terms) highlights the impacts of this increasingly competitive market.

Total rail freight operating and capital costs were estimated for STCC. For DTCC, these costs have been redacted by KiwiRail (for reasons of commercial sensitivity), so public comparisons are not possible. STCC did not show above and below rail costs separately, apart from an asset charge, so these figures are for total costs, including return on assets. For comparability, the STCC figures for both recoverable and non-recoverable infrastructure are included.

Both STCC and DTCC estimated the value of assets and charged a return on that valuation. In STCC, that was 7%, in DTCC 4% (both in real terms). STCC distinguished between recoverable and non-recoverable track costs, whereas DTCC took an official ODRC set of figures, which did not make this distinction. Table A5.3 shows the STCC return re-estimated at 4%, and also adjusted for inflation, so as to be consistent with DTCC: the combined effect is shown in the final two "adjusted" columns.

Table A5.3	Freight asset	valuation
------------	---------------	-----------

\$m	Asset valuation Rolling stock (nominal)	Asset valuation Below rail (nominal)	Asset charge Rolling stock (nominal)	Asset charge Below rail (nominal)	Asset charge Rolling stock* (real 18/19)** (adjusted)	Asset charge Below rail (real 18/19)** (adjusted)
STCC	476*	6,425	52	450	42	365
DTCC	959	6,518	38	261	38	261
Difference %	+101%	+1%	-27%	-42%	-10%	-28%

*"Replacement as existing. ** Inflation factor of 1.42 (CPI movement Q4 2001 to Q4 2018).

Table A5.4 summarises the available information on freight operating and capital costs. The level of detail available in DTCC was less than for STCC. In real terms (2018/19 prices and allowing a 4% real return), the DTCC total figure of \$1,042 million was \$268 million (35%) higher than the equivalent STCC total.

Table A5.4	Freight	Operating	and	Capital	Costs
------------	---------	-----------	-----	---------	-------

\$m	Total costs	STCC Adjusted (for inflation and 4% return)
STCC		
Recurrent costs	258	367
Rolling stock asset charge	52	42
Infra charge – recoverable	113	92
Infra charge –non-recov	337	273
Total STCC	760	774
DTCC		
Opns & mtce, asset charge, depreciation/rehabilitation		1,042
Difference		+268

A5.4 Long-distance passenger business

A5.4.1 Business changes since STCC

During the 2001/02 year, the long-distance passenger trains were sold to a private company, but by 2018/19 they had returned to KiwiRail. In 2018/19, there was one less daily service than in 2001/02: one service ran only on alternate days, and one operated only in summer. In 2001/02, all rail suburban services were operated by KiwiRail, on behalf of regional councils. By 2018/19, the services in both Auckland and Wellington were the responsibility of the regional councils, with contractual arrangements between the councils and KiwiRail for use of the infrastructure (track, signalling etc) and with other contractors undertaking most operational functions on behalf of the councils.

A5.4.2 Passenger operating and financial performance

Long-distance passenger numbers and financial statistics from the two studies are reported in Table A5.5. Note that these figures include the Capital Connection (Palmerston North – Wellington); but exclude the Te Huia service (Hamilton- Auckland) as it started operation only after the DTCC rail appraisal work was largely completed.

Year (study)	LD pax (000)	Pax km (m)	Reven ue (\$m)	Real revenue (\$m)	Op costs (\$m)	Real op costs	Infra costs)	Adjusted valuation – rolling stock	Asset charge (adj)
2001/02 (STCC)	500	128	23	32	20*	29	**	39	3
2018/19 (DTCC)	342	73	31	31	35	35	8	90	4
Difference (%)	-32	-43	+35	-3	+75	+21		+131	+33

Table A5.5: Long Distance Passenger – Operating Revenue and Cost Data

*"Recurrent costs" ** Infrastructure costs not allocated to LD Passenger in STCC

A5.5 Safety

Accident externality costs for rail were not addressed in STCC. DTCC explored the accident costs in more detail, estimating a total economic cost of some \$16 million per year (excluding urban passenger services). The main component of this cost was the social cost of accidents of some \$11.5 million pa (based on social costs of deaths and injuries), with lesser components relating to freight delays and main-line derailments.

On the basis of comparison with heavy road freight movements only, the unit social costs of rail accidents (per ntkm) were estimated at less than 40% of those for accidents relating to road freight movements.

A5.6 Environmental costs

The two studies valued the environmental costs as summarised in Table A5.6 (with STCC adjusted for inflation).

In the case of road trucks, the DTCC environmental costs do not distinguish between HCV1 and HCV2. As a result, the road freight costs are likely to be somewhat over-stated relative to the rail freight costs.

The main reason for the differences in environmental costs between STCC and DTCC is likely to be that the unit values of the various environmental impacts have risen (in real terms). Even then, DTCC notes that its air pollution estimates may be significantly under-valued relative to very recent environmental research, by a factor in the order of 10.

\$m	GHG	Air pollution	Noise	Total		
Rail freight						
STCC	7	9	n.a.	16		
DTCC	13	19	58	90.		
Road freight						
STCC (HCV1+2)	40	142	28	212		
DTCC (HCV)	244	142	192*	417		
Rail LD pax						
STCC	Not separately identified					
DTCC	0.2	0.2	n.a.	0.4		

Table A5.6: Environmental Total Costs (in 2018/19 prices)

* all trucks, not just HCV

The values estimated in the two studies are shown, on a normalised (unit rate) basis (i.e., per ntkm or passenger km), in Table A5.7. Rail generally performs better than road in environmental terms on a unit rate basis, except for noise, but the gap between road and rail has narrowed, primarily because of the noise value.

Cents per ntkm/pkm	GHG	Air pollution	Noise	Total			
Rail freight							
STCC	0.2	0.2	n.a	0.4			
DTCC	0.5	0.5	1.5	2.5			
Road freight							
STCC (HCV1+2)*	0.3	1.2	0.2	1.7			
DTCC (HCV)	1.0	0.7	1.25*	3.0			
Rail LD pax							
STCC		Not separately identified					
DTCC	0.1	0.2	n.a	0.3			

Table A5.7: Unit environmental Costs (per ntkm and pkm)

Note: *Estimated on basis of 11564m Ntkm, see STCC Table D2

A5.7 Summary of Results

Table A5.8 provides summary comparisons between the rail (freight and long-distance passenger) market segments of the two studies, in terms of the transport task, the economic costs, the user charges and the financial subsidy performance. The DTCC figures are taken principally from this report (see Table S.1 and Table 3.3). The STCC figures are provided on the basis of the best match to the various DTCC categories, and after 'standardisation' for inflation and the rate of return.

Item	11	Rail	Freight	Rail LD Passenger		
Item	Units	ѕтсс	DTCC	STCC	DTCC	
Transport task (ntkm, pkm)	millions	3,739	3,847*	128	73	
Operations/infra costs & asset charges **	\$m pa	774	1,042	32	46	
Accidents	\$m pa	0	15	n.a	0.9	
Environmental	\$m pa	16	90	n.a	0.4	
User time	\$m pa	-	-	n.a.	13	
Total economic costs	\$m pa	790	1,147	32	60	
Econ costs per unit	Cents per tkm, pkm	21	30	25	82	
User charges	\$m pa	507	403	32	31	
Financial subsidy [opns + infra costs – user charges]	\$m pa	267	639	0	15	
Financial subsidy/unit	Cents per tkm, pkm	7	17	0	20	
Financial cost recov [User charges/(opns + infra costs)]	%	65.5	38.7	100	67.2	

Table A5.8: Summary Comparison (\$2018/19)

* Differs from the 4,407m shown in DTCC Table S.1. For the sake of comparability, the ntkm numbers are expressed on the same basis of calculation for both STCC and DTCC.

** This cost category comprises essentially the same cost components at the time of STCC (when the railway was privately owned) and DTCC (after the railway was brought into government ownership).

Domestic Transport Costs and charges Study

Main Report

ISSN 978-1-99-117848-0

