

Update on HAPINZ 3.0 He rangi hauora he iwi ora

TKHE-EG Meeting Tue 11 February 2020

Outline

- The name
- The team
- The methodology
 - Base year, pollutants, sources
 - Health endpoints & cohort study
 - Social costs & damage costs
- The outputs and timing
 - Deliverables
 - When?

The name

HAPINZ = Health and Air Pollution in NZ

We're calling our project **HAPINZ 3.0** to differentiate it from:

- The original study HAPINZ 1.0 Fisher et al 2007 (based on 2001)
- The last update HAPINZ 2.0 Kuschel et al 2012 (based on 2006)

With the byline:

He rangi hauora he iwi ora

= Healthy air means healthy people

The team - us

Person	Role/Key Tasks
Jayne Metcalfe*	 source ambient monitoring, source apportionment &
Air Quality Scientist	emissions mapping data
Emission Impossible Ltd	 design & develop the exposure model
Auckland	 design & develop the health effects model
Dr Gerda Kuschel*	 manage the project team, costs & timing
Air Quality Scientist	 single point of contact for steering group & reporting
Emission Impossible Ltd	 assist with the design of the exposure model
Auckland	 assist with design of health effects model
	 primary author/editor compiling the final report
Louise Wickham/Surekha Sridhar	 source ambient monitoring, source apportionment &
Air Quality Scientist	emissions mapping data
Emission Impossible Ltd	 assist with development of exposure & health effects
Auckland	models

^{*} Part of the HAPINZ 2012 (HAPINZ 2.0) team

The team – health stats & #s

Person	Role/Key Tasks
Dr Simon Hales*/June Atkinson Epidemiologist Dept Public Health University of Otago, Wellington	 confirm appropriate ERFs investigate ethnicity impacts
Dr Alistair Woodward* Epidemiologist School of Pop'n Health University of Auckland	 provide internal review & advice on ERF/ethnicity assist with estimations of co-benefits associated with reductions in greenhouse gas emissions
Kylie Mason Statistician Centre for Pop'n Health Research Massey University, Wellington	 supply health incidence & population statistics assist with the estimations of years of life lost link with other environmental health indicators datasets

^{*} Part of the HAPINZ 2012 (HAPINZ 2.0) team

The team – sources, \$ & messages

Person	Role/Key Tasks
Keith Hastings GIS Consultant Jacobs Wellington	 provide NO₂, other emissions & traffic mapping data advise on use/application of GIS to establish exposure assist with mapping/representation of outputs
Dr Tim Denne Economist Resource Economics Ltd Auckland	 cost the health endpoints e.g. VoLY, VoSL & hospitalisations develop damage costs
Dr Perry Davy Atmospheric Chemist GNS Science Ltd Wellington	 supply source apportionment data from the central repository, including As and BC data advise on application of relevant data
Dr Jess Berentson-Shaw Policy & Comms Researcher The Workshop Auckland	 advise on innovative science communication strategies assist with the development of key messages

Method – base year/spatial unit

Base year	2016 for population*
Spatial resolution	Calculations undertaken using 2013 census area unit boundaries Results reported by 16 regional councils, 71 airsheds, 74 territorial local authorities and 139 urban areas
Population covered	100% of 2016 population

- Base year currently guaranteed as 2015 (for 2014-2016) but hope to get good quality 2017 provisional mortality data to extend to 2016 (shown as * above)
- Health incidence data uses domicile codes which relate to CAUs
- Assumes results reported to same spatial resolution as HAPINZ 2.0

Method - pollutants

Pollutants

Priority pollutants

- particulate matter (PM₁₀ and PM_{2.5})
- nitrogen dioxide (NO₂)
- We have good monitoring data (or representative models) covering NZ for PM_{10} , $PM_{2.5}$, NO_2 together with reasonably robust exposure-response functions for relevant health outcomes
- Black Carbon, PAHs, As, and Pb were investigated but insufficient information available currently to do them justice
- Greenhouse gas co-benefits to be addressed by incorporating CO₂
 in damage costs

Method - exposure assessment

Exposure assessment

 PM_{10} and $PM_{2.5}$: ambient monitoring data averaged for 2015-2018 covering the majority of urban areas in New Zealand, with proxy monitoring used in unmonitored areas

NO2: modelling estimates from the NZ Transport Agency NVED exposure tool*

For PM

- Monitored locations, will use ambient data averaged 2015-2018 with the concentration applied to entire airshed (using judgment)
- Unmonitored locations, will use proxy data (similar locations)

For NO₂

 Will opt for the best available model at the time of analysis out of either NVED exposure model & Transport Impact Model

Method – source contributions

Source attributions

 PM_{10} and $PM_{2.5}$ using source apportionment data: marine aerosol, biomass burning, motor vehicles, secondary PM, crustal material

PM₁₀ and PM_{2.5} using emissions inventory data: industry*, open burning*

NO2: motor vehicle exhaust emissions only

For PM

- PM speciation will provide marine aerosol, biomass burning (urban DFs), MVs (exhaust, brake/tyre wear & re-entrained road dust), secondary PM, crustal material (construction)
- Inventory data will estimate industry & possibly open burning
- Aviation, shipping, and rail will be investigated further

For NO₂

Assessment will cover motor vehicle exhaust only

Method - health endpoints

Health endpoints	 Primary health outcomes mortality and years of life lost (YLL) from long-term PM_{2.5} for all adults 30+ years, all ethnicities and for Māori/Pasifika* 		
	 mortality and YLL from long-term NO₂ for all adults 30+ years, all ethnicities cardiac admissions from long-term PM_{2.5} for all ages, all ethnicities respiratory admissions from long-term PM_{2.5} for all ages, all ethnicities respiratory admissions from long-term NO₂ for all ages, all ethnicities 		
Health endpoints (cont.)	Secondary health outcomes (for comparison with HAPINZ 2.0) • mortality from long-term PM ₁₀ for all adults 30+ years, all ethnicities and for Māori/Pasifika*		
	 mortality from long-term PM₁₀ for all infants, aged 1 month to 1 year restricted activity days from long-term PM_{2.5} for all ages, all ethnicities Other outcomes childhood asthma* 		

• Childhood asthma ERFs are available and will develop proxy indicators from health incidence data

Method – cohort study

Already funded to

 Develop a set of improved PM exposure-response functions for all adults plus Māori/Pasifika based on 2013-2017 data

Currently seeking additional funding to

- Extend exposure to 2006-2017 to improve robustness
- Undertake finer scale assessment of NO₂ effects
- Extend PM mortality cohort to cover PM morbidity

Method - social costs

Social costs

Valuation of mortality costs

- by change in mortality multiplied by current NZ Value of a Statistical Life (VoSL)
- by change in total life years multiplied by a NZ Value of a Life Year (VoLY)

Valuation of morbidity costs

- cardiovascular hospital admissions
- respiratory hospital admission
- restricted activity days

Development of a suite of NZ-specific damage costs for consistent assessment of benefits to society in reducing harmful emissions and greenhouse gases

For mortality

will produce a range of Volys based on Vosl & typical discount rates

For damage costs

- will use HAPINZ 3.0 output with inventory data to develop harmful emission damage costs for areas with diff pop densities
- will examine marginal abatement cost curves for NZ and/or review other social cost of carbon values

Outputs – combined model

Proposed modelling outputs

- A combined exposure/health effects model (in Excel)
- A prototype GIS tool, which will be available online. This
 tool will make key results available spatially and will allow
 users to undertake sensitivity analysis for key variables.
- Approach will be similar to HAPINZ 2.0 but with refinements:
- Simplifying the model, reflecting the accuracy of the source data
- Improving "update-ability", making it easier for end-users to update key datasets more frequently
- Extending the scenario testing, enabling assessment of reductions in pollutant concentrations by individual sources

Select a source:

Total

Health effects	Default	Scenario	Range	
Premature mortality 30+ yrs	0.07	0.1	(0.03-0.10)	per adult per yea

Restricted Activity Days

TOTAL POPULATION

Premature mortality Maori 30+ yrs

Premature mortality babies 0-1 yrs Cardiac hospital admissions, all a Respiratory hospital admissions, Respiratory hospital admissions, c

Respiratory hospital admissions, o Restricted activity days, all ages

Spatial resolution

Select a region, city OR airshed (de

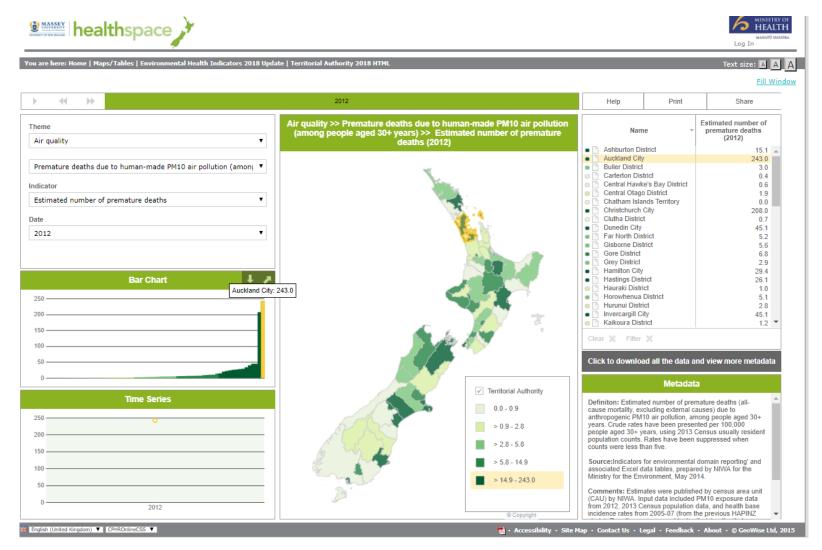
Results

INPUT

Model – example

RESULTS							
			Health effe	ects (cases)			Social
Health Effects	Domestic fires	Motor vehicles	Industry	Open burning	Natural	Total	cost (\$million /annum)
Mortality Adults 30+ yrs	653	255	123	139	1,136	2,307	8,211.4
Mortality Adults Maori 30+ yrs	105	41	19	31	228	422	1,504.1
Mortality Babies 0-1 yrs	2.2	1.0	0.3	0.6	4.7	8.8	31.2
Cardiac Hospital Admissions: All ages	130.8	50.9	21.1	29.3	216.5	448.6	2.8
Respiratory Hospital Admissions: All ag	202.7	91.2	33.5	47.4	356.0	730.8	3.3
Respiratory Hospital Admissions: Childi	67.5	31.5	19				
Respiratory Hospital Admissions: Childi	41.6	18.4		METRANSP	OR _	nd addrag	o oz place

352,342


817,582

SCENARIO RESULTS				
			Health	
Health Effects	Domestic fires	Motor vehicles	Indust	
Mortality Adults 30+ yrs	653	255		
Mortality Adults Maori 30+ yrs	105	41		
Mortality Babies 0-1 yrs	2.2	1.0		
Cardiac Hospital Admissions: All ages	130.8	50.9	:	
Respiratory Hospital Admissions: All ag	202.7	91.2		
Respiratory Hospital Admissions: Childi	67.5	31.5	:	
Respiratory Hospital Admissions: Childi	41.6	18.4		
Restricted Activity Days	817,582	352,342	128,	
TOTAL POPULATION 4,027,902	\$ 2,384.2	\$ 934.8	\$ 44	
INPUT		RESUL	TS	

4,027,902

Outputs – links to other work e.g.

Outputs – damage costs e.g.

Pollutant	Costs in NZD/tonne	Value Base Date	
CO ₂	\$65.99	2015	
PM ₁₀	\$451,123	2015	i de arrana L
NO _X	\$16,031	2015	
СО	\$4.16	2015	
НС	\$1,318	2015	

Outputs - messaging

Already funded to

 Develop a draft messaging guide viz. How to Talk About Climate Change: A Toolkit for Collective Action

Currently seeking additional funding via EnviroLink to

- Offer sectoral training
- Map the landscape of narratives and understanding
- Test new strategies

How to talk about climate change:

A toolkit for encouraging collective action

Prepared by: Jessica Berentson-Shaw & Marianne Elliott

The timeline – what next?

Stage	Description	Completion by
1	Lit review/methodology*	Mid Dec 2019
2	Draft models, reports & tools	Mid Oct 2020
3	International peer review	End Nov 2020
4	Final models, reports & tools	End Jan 2021
5	Outreach material, messaging	Mid May 2021

^{*} Peer-reviewed by (1) Dr Xavier Querol from the Institute of Environmental Assessment and Water Research in Spain and (2) Dr Mike Holland from Ecometrics Research and Consulting (EMRC) in the UK

Thanks for listening and any questions?

