Development in methods to estimate the economic impacts of transport

Wayne Heerdegen, New Zealand Transport Agency
THE ECONOMIC ROLE OF TRANSPORT
ASSESSMENT OF ECONOMIC CONTRIBUTION OF TRANSPORT

The economic contribution of transport interventions and transport policy can be assessed from various perspectives. These include:

• effects on aggregate economic welfare (that is, the sum of consumer and producer surplus), which is the focus of cost-benefit analysis, as applied to transport policies or projects
• micro-economic, for example, enterprise or household-level productivity effects
• macro-economic, for example, contributions to GDP, investment or employment, and the spatial patterns of economic activity.
OVER-LAPPING ECONOMIC IMPACTS

Transport investments have multiple over-lapping economic impacts, with the initial impacts rippling through the economy both spatially and over time manifesting through:

• Direct mechanism – reduction in transport costs offering improved accessibility to markets and resources and changes in the supply and demand for labour.

• Indirect mechanism – secondary entities supplying inputs to directly affected businesses.

• Dynamic mechanism: Changes in residential and industrial location, property prices.

• Differential effects on the economy in any given area/region relative to other areas/regions
SOCIAL VALUE OF TRANSPORT INVESTMENT

METHODS TO ESTIMATE ECONOMIC IMPACT

<table>
<thead>
<tr>
<th>Welfare benefit</th>
<th>Modelling welfare benefits</th>
<th>Modelling GDP effects</th>
<th>Modelling spatial effects</th>
<th>Plausible reasons for effects to exist (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport user benefits</td>
<td>EEM</td>
<td>(2)</td>
<td></td>
<td>Low (or zero) utility is gained from time spent travelling (hence reduced travel time is of value)</td>
</tr>
<tr>
<td>Externalities due to intra-urban urbanisation and localisation</td>
<td>SCGE MODEL</td>
<td></td>
<td></td>
<td>Increased competition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Improved coordination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>New firm nursery.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Better job matching.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Increased skill specialisation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>More knowledge exchange.</td>
</tr>
<tr>
<td>Externalities due to inter-urban localisation</td>
<td>SCGE MODEL</td>
<td></td>
<td></td>
<td>Specialisation around existing industry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Increased innovation derived from higher international trade & investment.</td>
</tr>
<tr>
<td>Changes in land use</td>
<td>SCGE MODEL</td>
<td>SCGE MODEL</td>
<td>SCGE MODEL</td>
<td>Better able to match work–residence locations with preferences, leading to changes in locations of firms and households.</td>
</tr>
</tbody>
</table>
ECONOMIC IMPACTS OF CONNECTIVITY: GVA AND SCGE MODEL

Source: Byett, Stroombergen, 2016 Forthcoming
FINDINGS – 5 KEY RESULTS

• Excluding agglomeration effects Regional GDP increases by 0.2%. Similar to productivity increase associated with shorter travel times.

• An increase in regional labour supply of 1% adds a further 0.7% to GDP, which is more than the share of labour in GDP which is 0.6%. The additional 0.1% is gain from an improved allocation of work and residence locations. Would not be captured in standard CBA.

• Productivity increase within GVA model adds another 0.1% to GDP. Not captured by standard CBA, but WEBs framework can partially capture.

• Combined 0.4% lift in GDP equivalent to $380 million per annum or $4.7 billion (pv)

• Consumer utility exceeds increases in GDP.
WHAT DECISION ARE YOU MAKING?

• Context of models and level of uncertainty is important – match the tool to the purpose.
• Economic models are a useful as a method for investigation – “What if”
• How well do scenarios match reality?

Source: Mackie et al, 2014